Арахиса химический состав: Калорийность Арахис. Химический состав и пищевая ценность.

Содержание

Калорийность Арахис. Химический состав и пищевая ценность.

Арахис богат такими витаминами и минералами, как: витамином B1 — 49,3 %, витамином B5 — 35,3 %, витамином B6 — 17,4 %, витамином B9 — 60 %, витамином E — 67,3 %, витамином H — 35 %, витамином PP — 94,5 %, калием — 26,3 %, кремнием — 266,7 %, магнием — 45,5 %, фосфором — 43,8 %, железом — 27,8 %, кобальтом — 67,5 %, марганцем — 96,7 %, медью — 114,4 %, молибденом — 16,6 %, селеном — 13,1 %, хромом — 19,4 %, цинком — 27,3 %
  • Витамин В1 входит в состав важнейших ферментов углеводного и энергетического обмена, обеспечивающих организм энергией и пластическими веществами, а также метаболизма разветвленных аминокислот. Недостаток этого витамина ведет к серьезным нарушениям со стороны нервной, пищеварительной и сердечно-сосудистой систем.
  • Витамин В5 участвует в белковом, жировом, углеводном обмене, обмене холестерина, синтезе ряда гормонов, гемоглобина, способствует всасыванию аминокислот и сахаров в кишечнике, поддерживает функцию коры надпочечников. Недостаток пантотеновой кислоты может вести к поражению кожи и слизистых.
  • Витамин В6 участвует в поддержании иммунного ответа, процессах торможения и возбуждения в центральной нервной системе, в превращениях аминокислот, метаболизме триптофана, липидов и нуклеиновых кислот, способствует нормальному формированию эритроцитов, поддержанию нормального уровня гомоцистеина в крови. Недостаточное потребление витамина В6 сопровождается снижением аппетита, нарушением состояния кожных покровов, развитием гомоцистеинемии, анемии.
  • Витамин В9 в качестве кофермента участвуют в метаболизме нуклеиновых и аминокислот. Дефицит фолатов ведет к нарушению синтеза нуклеиновых кислот и белка, следствием чего является торможение роста и деления клеток, особенно в быстро пролифелирующих тканях: костный мозг, эпителий кишечника и др. Недостаточное потребление фолата во время беременности является одной из причин недоношенности, гипотрофии, врожденных уродств и нарушений развития ребенка. Показана выраженная связь между уровнем фолата, гомоцистеина и риском возникновения сердечно-сосудистых заболеваний.
  • Витамин Е обладает антиоксидантными свойствами, необходим для функционирования половых желез, сердечной мышцы, является универсальным стабилизатором клеточных мембран. При дефиците витамина Е наблюдаются гемолиз эритроцитов, неврологические нарушения.
  • Витамин Н участвует в синтезе жиров, гликогена, метаболизме аминокислот. Недостаточное потребление этого витамина может вести к нарушению нормального состояния кожных покровов.
  • Витамин РР участвует в окислительно-восстановительных реакциях энергетического метаболизма. Недостаточное потребление витамина сопровождается нарушением нормального состояния кожных покровов, желудочно- кишечного тракта и нервной системы.
  • Калий является основным внутриклеточным ионом, принимающим участие в регуляции водного, кислотного и электролитного баланса, участвует в процессах проведения нервных импульсов, регуляции давления.
  • Кремний входит в качестве структурного компонента в состав гликозоаминогликанов и стимулирует синтез коллагена.
  • Магний участвует в энергетическом метаболизме, синтезе белков, нуклеиновых кислот, обладает стабилизирующим действием для мембран, необходим для поддержания гомеостаза кальция, калия и натрия. Недостаток магния приводит к гипомагниемии, повышению риска развития гипертонии, болезней сердца.
  • Фосфор принимает участие во многих физиологических процессах, включая энергетический обмен, регулирует кислотно-щелочного баланса, входит в состав фосфолипидов, нуклеотидов и нуклеиновых кислот, необходим для минерализации костей и зубов. Дефицит приводит к анорексии, анемии, рахиту.
  • Железо входит в состав различных по своей функции белков, в том числе ферментов. Участвует в транспорте электронов, кислорода, обеспечивает протекание окислительно- восстановительных реакций и активацию перекисного окисления. Недостаточное потребление ведет к гипохромной анемии, миоглобиндефицитной атонии скелетных мышц, повышенной утомляемости, миокардиопатии, атрофическому гастриту.
  • Кобальт входит в состав витамина В12. Активирует ферменты обмена жирных кислот и метаболизма фолиевой кислоты.
  • Марганец участвует в образовании костной и соединительной ткани, входит в состав ферментов, включающихся в метаболизм аминокислот, углеводов, катехоламинов; необходим для синтеза холестерина и нуклеотидов. Недостаточное потребление сопровождается замедлением роста, нарушениями в репродуктивной системе, повышенной хрупкостью костной ткани, нарушениями углеводного и липидного обмена.
  • Медь входит в состав ферментов, обладающих окислительно-восстановительной активностью и участвующих в метаболизме железа, стимулирует усвоение белков и углеводов. Участвует в процессах обеспечения тканей организма человека кислородом. Дефицит проявляется нарушениями формирования сердечно-сосудистой системы и скелета, развитием дисплазии соединительной ткани.
  • Молибден является кофактором многих ферментов, обеспечивающих метаболизм серусодержащих аминокислот, пуринов и пиримидинов.
  • Селен — эссенциальный элемент антиоксидантной системы защиты организма человека, обладает иммуномодулирующим действием, участвует в регуляции действия тиреоидных гормонов. Дефицит приводит к болезни Кашина-Бека (остеоартроз с множественной деформацией суставов, позвоночника и конечностей), болезни Кешана (эндемическая миокардиопатия), наследственной тромбастении.
  • Хром участвует в регуляции уровня глюкозы крови, усиливая действие инсулина. Дефицит приводит к снижению толерантности к глюкозе.
  • Цинк входит в состав более 300 ферментов, участвует в процессах синтеза и распада углеводов, белков, жиров, нуклеиновых кислот и в регуляции экспрессии ряда генов. Недостаточное потребление приводит к анемии, вторичному иммунодефициту, циррозу печени, половой дисфункции, наличию пороков развития плода. Исследованиями последних лет выявлена способность высоких доз цинка нарушать усвоение меди и тем способствовать развитию анемии.
ещескрыть

Полный справочник самых полезных продуктов вы можете посмотреть в приложении «Мой здоровый рацион».

Калорийность Арахис. Химический состав и пищевая ценность.

Арахис богат такими витаминами и минералами, как: витамином B1 — 42,7 %, витамином B5 — 35,3 %, витамином B6 — 17,4 %, витамином B9 — 60 %, витамином E — 55,5 %, витамином PP — 60,3 %, калием — 28,2 %, магнием — 42 %, фосфором — 47 %, железом — 25,4 %, марганцем — 96,7 %, медью — 114,4 %, селеном — 13,1 %, цинком — 27,3 %
  • Витамин В1 входит в состав важнейших ферментов углеводного и энергетического обмена, обеспечивающих организм энергией и пластическими веществами, а также метаболизма разветвленных аминокислот. Недостаток этого витамина ведет к серьезным нарушениям со стороны нервной, пищеварительной и сердечно-сосудистой систем.
  • Витамин В5 участвует в белковом, жировом, углеводном обмене, обмене холестерина, синтезе ряда гормонов, гемоглобина, способствует всасыванию аминокислот и сахаров в кишечнике, поддерживает функцию коры надпочечников. Недостаток пантотеновой кислоты может вести к поражению кожи и слизистых.
  • Витамин В6 участвует в поддержании иммунного ответа, процессах торможения и возбуждения в центральной нервной системе, в превращениях аминокислот, метаболизме триптофана, липидов и нуклеиновых кислот, способствует нормальному формированию эритроцитов, поддержанию нормального уровня гомоцистеина в крови. Недостаточное потребление витамина В6 сопровождается снижением аппетита, нарушением состояния кожных покровов, развитием гомоцистеинемии, анемии.
  • Витамин В9
    в качестве кофермента участвуют в метаболизме нуклеиновых и аминокислот. Дефицит фолатов ведет к нарушению синтеза нуклеиновых кислот и белка, следствием чего является торможение роста и деления клеток, особенно в быстро пролифелирующих тканях: костный мозг, эпителий кишечника и др. Недостаточное потребление фолата во время беременности является одной из причин недоношенности, гипотрофии, врожденных уродств и нарушений развития ребенка. Показана выраженная связь между уровнем фолата, гомоцистеина и риском возникновения сердечно-сосудистых заболеваний.
  • Витамин Е обладает антиоксидантными свойствами, необходим для функционирования половых желез, сердечной мышцы, является универсальным стабилизатором клеточных мембран. При дефиците витамина Е наблюдаются гемолиз эритроцитов, неврологические нарушения.
  • Витамин РР участвует в окислительно-восстановительных реакциях энергетического метаболизма. Недостаточное потребление витамина сопровождается нарушением нормального состояния кожных покровов, желудочно- кишечного тракта и нервной системы.
  • Калий является основным внутриклеточным ионом, принимающим участие в регуляции водного, кислотного и электролитного баланса, участвует в процессах проведения нервных импульсов, регуляции давления.
  • Магний участвует в энергетическом метаболизме, синтезе белков, нуклеиновых кислот, обладает стабилизирующим действием для мембран, необходим для поддержания гомеостаза кальция, калия и натрия. Недостаток магния приводит к гипомагниемии, повышению риска развития гипертонии, болезней сердца.
  • Фосфор принимает участие во многих физиологических процессах, включая энергетический обмен, регулирует кислотно-щелочного баланса, входит в состав фосфолипидов, нуклеотидов и нуклеиновых кислот, необходим для минерализации костей и зубов. Дефицит приводит к анорексии, анемии, рахиту.
  • Железо входит в состав различных по своей функции белков, в том числе ферментов. Участвует в транспорте электронов, кислорода, обеспечивает протекание окислительно- восстановительных реакций и активацию перекисного окисления. Недостаточное потребление ведет к гипохромной анемии, миоглобиндефицитной атонии скелетных мышц, повышенной утомляемости, миокардиопатии, атрофическому гастриту.
  • Марганец участвует в образовании костной и соединительной ткани, входит в состав ферментов, включающихся в метаболизм аминокислот, углеводов, катехоламинов; необходим для синтеза холестерина и нуклеотидов. Недостаточное потребление сопровождается замедлением роста, нарушениями в репродуктивной системе, повышенной хрупкостью костной ткани, нарушениями углеводного и липидного обмена.
  • Медь входит в состав ферментов, обладающих окислительно-восстановительной активностью и участвующих в метаболизме железа, стимулирует усвоение белков и углеводов. Участвует в процессах обеспечения тканей организма человека кислородом. Дефицит проявляется нарушениями формирования сердечно-сосудистой системы и скелета, развитием дисплазии соединительной ткани.
  • Селен — эссенциальный элемент антиоксидантной системы защиты организма человека, обладает иммуномодулирующим действием, участвует в регуляции действия тиреоидных гормонов. Дефицит приводит к болезни Кашина-Бека (остеоартроз с множественной деформацией суставов, позвоночника и конечностей), болезни Кешана (эндемическая миокардиопатия), наследственной тромбастении.
  • Цинк входит в состав более 300 ферментов, участвует в процессах синтеза и распада углеводов, белков, жиров, нуклеиновых кислот и в регуляции экспрессии ряда генов. Недостаточное потребление приводит к анемии, вторичному иммунодефициту, циррозу печени, половой дисфункции, наличию пороков развития плода. Исследованиями последних лет выявлена способность высоких доз цинка нарушать усвоение меди и тем способствовать развитию анемии.
ещескрыть

Полный справочник самых полезных продуктов вы можете посмотреть в приложении «Мой здоровый рацион».

Калорийность Арахис. Химический состав и пищевая ценность.

Арахис богат такими витаминами и минералами, как: витамином B1 — 49,3 %, витамином B5 — 35,3 %, витамином B6 — 17,4 %, витамином B9 — 60 %, витамином E — 67,3 %, витамином H — 35 %, витамином PP — 94,5 %, калием — 26,3 %, кремнием — 266,7 %, магнием — 45,5 %, фосфором — 43,8 %, железом — 27,8 %, кобальтом — 67,5 %, марганцем — 96,7 %, медью — 114,4 %, молибденом — 16,6 %, селеном — 13,1 %, хромом — 19,4 %, цинком — 27,3 %
  • Витамин В1 входит в состав важнейших ферментов углеводного и энергетического обмена, обеспечивающих организм энергией и пластическими веществами, а также метаболизма разветвленных аминокислот. Недостаток этого витамина ведет к серьезным нарушениям со стороны нервной, пищеварительной и сердечно-сосудистой систем.
  • Витамин В5 участвует в белковом, жировом, углеводном обмене, обмене холестерина, синтезе ряда гормонов, гемоглобина, способствует всасыванию аминокислот и сахаров в кишечнике, поддерживает функцию коры надпочечников. Недостаток пантотеновой кислоты может вести к поражению кожи и слизистых.
  • Витамин В6 участвует в поддержании иммунного ответа, процессах торможения и возбуждения в центральной нервной системе, в превращениях аминокислот, метаболизме триптофана, липидов и нуклеиновых кислот, способствует нормальному формированию эритроцитов, поддержанию нормального уровня гомоцистеина в крови. Недостаточное потребление витамина В6 сопровождается снижением аппетита, нарушением состояния кожных покровов, развитием гомоцистеинемии, анемии.
  • Витамин В9 в качестве кофермента участвуют в метаболизме нуклеиновых и аминокислот. Дефицит фолатов ведет к нарушению синтеза нуклеиновых кислот и белка, следствием чего является торможение роста и деления клеток, особенно в быстро пролифелирующих тканях: костный мозг, эпителий кишечника и др. Недостаточное потребление фолата во время беременности является одной из причин недоношенности, гипотрофии, врожденных уродств и нарушений развития ребенка. Показана выраженная связь между уровнем фолата, гомоцистеина и риском возникновения сердечно-сосудистых заболеваний.
  • Витамин Е обладает антиоксидантными свойствами, необходим для функционирования половых желез, сердечной мышцы, является универсальным стабилизатором клеточных мембран. При дефиците витамина Е наблюдаются гемолиз эритроцитов, неврологические нарушения.
  • Витамин Н участвует в синтезе жиров, гликогена, метаболизме аминокислот. Недостаточное потребление этого витамина может вести к нарушению нормального состояния кожных покровов.
  • Витамин РР участвует в окислительно-восстановительных реакциях энергетического метаболизма. Недостаточное потребление витамина сопровождается нарушением нормального состояния кожных покровов, желудочно- кишечного тракта и нервной системы.
  • Калий является основным внутриклеточным ионом, принимающим участие в регуляции водного, кислотного и электролитного баланса, участвует в процессах проведения нервных импульсов, регуляции давления.
  • Кремний входит в качестве структурного компонента в состав гликозоаминогликанов и стимулирует синтез коллагена.
  • Магний участвует в энергетическом метаболизме, синтезе белков, нуклеиновых кислот, обладает стабилизирующим действием для мембран, необходим для поддержания гомеостаза кальция, калия и натрия. Недостаток магния приводит к гипомагниемии, повышению риска развития гипертонии, болезней сердца.
  • Фосфор принимает участие во многих физиологических процессах, включая энергетический обмен, регулирует кислотно-щелочного баланса, входит в состав фосфолипидов, нуклеотидов и нуклеиновых кислот, необходим для минерализации костей и зубов. Дефицит приводит к анорексии, анемии, рахиту.
  • Железо входит в состав различных по своей функции белков, в том числе ферментов. Участвует в транспорте электронов, кислорода, обеспечивает протекание окислительно- восстановительных реакций и активацию перекисного окисления. Недостаточное потребление ведет к гипохромной анемии, миоглобиндефицитной атонии скелетных мышц, повышенной утомляемости, миокардиопатии, атрофическому гастриту.
  • Кобальт входит в состав витамина В12. Активирует ферменты обмена жирных кислот и метаболизма фолиевой кислоты.
  • Марганец участвует в образовании костной и соединительной ткани, входит в состав ферментов, включающихся в метаболизм аминокислот, углеводов, катехоламинов; необходим для синтеза холестерина и нуклеотидов. Недостаточное потребление сопровождается замедлением роста, нарушениями в репродуктивной системе, повышенной хрупкостью костной ткани, нарушениями углеводного и липидного обмена.
  • Медь входит в состав ферментов, обладающих окислительно-восстановительной активностью и участвующих в метаболизме железа, стимулирует усвоение белков и углеводов. Участвует в процессах обеспечения тканей организма человека кислородом. Дефицит проявляется нарушениями формирования сердечно-сосудистой системы и скелета, развитием дисплазии соединительной ткани.
  • Молибден является кофактором многих ферментов, обеспечивающих метаболизм серусодержащих аминокислот, пуринов и пиримидинов.
  • Селен — эссенциальный элемент антиоксидантной системы защиты организма человека, обладает иммуномодулирующим действием, участвует в регуляции действия тиреоидных гормонов. Дефицит приводит к болезни Кашина-Бека (остеоартроз с множественной деформацией суставов, позвоночника и конечностей), болезни Кешана (эндемическая миокардиопатия), наследственной тромбастении.
  • Хром участвует в регуляции уровня глюкозы крови, усиливая действие инсулина. Дефицит приводит к снижению толерантности к глюкозе.
  • Цинк входит в состав более 300 ферментов, участвует в процессах синтеза и распада углеводов, белков, жиров, нуклеиновых кислот и в регуляции экспрессии ряда генов. Недостаточное потребление приводит к анемии, вторичному иммунодефициту, циррозу печени, половой дисфункции, наличию пороков развития плода. Исследованиями последних лет выявлена способность высоких доз цинка нарушать усвоение меди и тем способствовать развитию анемии.
ещескрыть

Полный справочник самых полезных продуктов вы можете посмотреть в приложении «Мой здоровый рацион».

Арахис — химический состав, пищевая ценность, БЖУ

Вес порции, г { { { В стаканах { {

1 ст — 146,0 г2 ст — 292,0 г3 ст — 438,0 г4 ст — 584,0 г5 ст — 730,0 г6 ст — 876,0 г7 ст — 1 022,0 г8 ст — 1 168,0 г9 ст — 1 314,0 г10 ст — 1 460,0 г11 ст — 1 606,0 г12 ст — 1 752,0 г13 ст — 1 898,0 г14 ст — 2 044,0 г15 ст — 2 190,0 г16 ст — 2 336,0 г17 ст — 2 482,0 г18 ст — 2 628,0 г19 ст — 2 774,0 г20 ст — 2 920,0 г21 ст — 3 066,0 г22 ст — 3 212,0 г23 ст — 3 358,0 г24 ст — 3 504,0 г25 ст — 3 650,0 г26 ст — 3 796,0 г27 ст — 3 942,0 г28 ст — 4 088,0 г29 ст — 4 234,0 г30 ст — 4 380,0 г31 ст — 4 526,0 г32 ст — 4 672,0 г33 ст — 4 818,0 г34 ст — 4 964,0 г35 ст — 5 110,0 г36 ст — 5 256,0 г37 ст — 5 402,0 г38 ст — 5 548,0 г39 ст — 5 694,0 г40 ст — 5 840,0 г41 ст — 5 986,0 г42 ст — 6 132,0 г43 ст — 6 278,0 г44 ст — 6 424,0 г45 ст — 6 570,0 г46 ст — 6 716,0 г47 ст — 6 862,0 г48 ст — 7 008,0 г49 ст — 7 154,0 г50 ст — 7 300,0 г51 ст — 7 446,0 г52 ст — 7 592,0 г53 ст — 7 738,0 г54 ст — 7 884,0 г55 ст — 8 030,0 г56 ст — 8 176,0 г57 ст — 8 322,0 г58 ст — 8 468,0 г59 ст — 8 614,0 г60 ст — 8 760,0 г61 ст — 8 906,0 г62 ст — 9 052,0 г63 ст — 9 198,0 г64 ст — 9 344,0 г65 ст — 9 490,0 г66 ст — 9 636,0 г67 ст — 9 782,0 г68 ст — 9 928,0 г69 ст — 10 074,0 г70 ст — 10 220,0 г71 ст — 10 366,0 г72 ст — 10 512,0 г73 ст — 10 658,0 г74 ст — 10 804,0 г75 ст — 10 950,0 г76 ст — 11 096,0 г77 ст — 11 242,0 г78 ст — 11 388,0 г79 ст — 11 534,0 г80 ст — 11 680,0 г81 ст — 11 826,0 г82 ст — 11 972,0 г83 ст — 12 118,0 г84 ст — 12 264,0 г85 ст — 12 410,0 г86 ст — 12 556,0 г87 ст — 12 702,0 г88 ст — 12 848,0 г89 ст — 12 994,0 г90 ст — 13 140,0 г91 ст — 13 286,0 г92 ст — 13 432,0 г93 ст — 13 578,0 г94 ст — 13 724,0 г95 ст — 13 870,0 г96 ст — 14 016,0 г97 ст — 14 162,0 г98 ст — 14 308,0 г99 ст — 14 454,0 г100 ст — 14 600,0 г

Арахис арахис сырой

Арахис жареный — химический состав, пищевая ценность, БЖУ

Вес порции, г { { { В стаканах { {

1 ст — 146,0 г2 ст — 292,0 г3 ст — 438,0 г4 ст — 584,0 г5 ст — 730,0 г6 ст — 876,0 г7 ст — 1 022,0 г8 ст — 1 168,0 г9 ст — 1 314,0 г10 ст — 1 460,0 г11 ст — 1 606,0 г12 ст — 1 752,0 г13 ст — 1 898,0 г14 ст — 2 044,0 г15 ст — 2 190,0 г16 ст — 2 336,0 г17 ст — 2 482,0 г18 ст — 2 628,0 г19 ст — 2 774,0 г20 ст — 2 920,0 г21 ст — 3 066,0 г22 ст — 3 212,0 г23 ст — 3 358,0 г24 ст — 3 504,0 г25 ст — 3 650,0 г26 ст — 3 796,0 г27 ст — 3 942,0 г28 ст — 4 088,0 г29 ст — 4 234,0 г30 ст — 4 380,0 г31 ст — 4 526,0 г32 ст — 4 672,0 г33 ст — 4 818,0 г34 ст — 4 964,0 г35 ст — 5 110,0 г36 ст — 5 256,0 г37 ст — 5 402,0 г38 ст — 5 548,0 г39 ст — 5 694,0 г40 ст — 5 840,0 г41 ст — 5 986,0 г42 ст — 6 132,0 г43 ст — 6 278,0 г44 ст — 6 424,0 г45 ст — 6 570,0 г46 ст — 6 716,0 г47 ст — 6 862,0 г48 ст — 7 008,0 г49 ст — 7 154,0 г50 ст — 7 300,0 г51 ст — 7 446,0 г52 ст — 7 592,0 г53 ст — 7 738,0 г54 ст — 7 884,0 г55 ст — 8 030,0 г56 ст — 8 176,0 г57 ст — 8 322,0 г58 ст — 8 468,0 г59 ст — 8 614,0 г60 ст — 8 760,0 г61 ст — 8 906,0 г62 ст — 9 052,0 г63 ст — 9 198,0 г64 ст — 9 344,0 г65 ст — 9 490,0 г66 ст — 9 636,0 г67 ст — 9 782,0 г68 ст — 9 928,0 г69 ст — 10 074,0 г70 ст — 10 220,0 г71 ст — 10 366,0 г72 ст — 10 512,0 г73 ст — 10 658,0 г74 ст — 10 804,0 г75 ст — 10 950,0 г76 ст — 11 096,0 г77 ст — 11 242,0 г78 ст — 11 388,0 г79 ст — 11 534,0 г80 ст — 11 680,0 г81 ст — 11 826,0 г82 ст — 11 972,0 г83 ст — 12 118,0 г84 ст — 12 264,0 г85 ст — 12 410,0 г86 ст — 12 556,0 г87 ст — 12 702,0 г88 ст — 12 848,0 г89 ст — 12 994,0 г90 ст — 13 140,0 г91 ст — 13 286,0 г92 ст — 13 432,0 г93 ст — 13 578,0 г94 ст — 13 724,0 г95 ст — 13 870,0 г96 ст — 14 016,0 г97 ст — 14 162,0 г98 ст — 14 308,0 г99 ст — 14 454,0 г100 ст — 14 600,0 г

Арахис жареный

Арахис — минеральный состав

Вес порции, г { { { В стаканах { {

1 ст — 146,0 г2 ст — 292,0 г3 ст — 438,0 г4 ст — 584,0 г5 ст — 730,0 г6 ст — 876,0 г7 ст — 1 022,0 г8 ст — 1 168,0 г9 ст — 1 314,0 г10 ст — 1 460,0 г11 ст — 1 606,0 г12 ст — 1 752,0 г13 ст — 1 898,0 г14 ст — 2 044,0 г15 ст — 2 190,0 г16 ст — 2 336,0 г17 ст — 2 482,0 г18 ст — 2 628,0 г19 ст — 2 774,0 г20 ст — 2 920,0 г21 ст — 3 066,0 г22 ст — 3 212,0 г23 ст — 3 358,0 г24 ст — 3 504,0 г25 ст — 3 650,0 г26 ст — 3 796,0 г27 ст — 3 942,0 г28 ст — 4 088,0 г29 ст — 4 234,0 г30 ст — 4 380,0 г31 ст — 4 526,0 г32 ст — 4 672,0 г33 ст — 4 818,0 г34 ст — 4 964,0 г35 ст — 5 110,0 г36 ст — 5 256,0 г37 ст — 5 402,0 г38 ст — 5 548,0 г39 ст — 5 694,0 г40 ст — 5 840,0 г41 ст — 5 986,0 г42 ст — 6 132,0 г43 ст — 6 278,0 г44 ст — 6 424,0 г45 ст — 6 570,0 г46 ст — 6 716,0 г47 ст — 6 862,0 г48 ст — 7 008,0 г49 ст — 7 154,0 г50 ст — 7 300,0 г51 ст — 7 446,0 г52 ст — 7 592,0 г53 ст — 7 738,0 г54 ст — 7 884,0 г55 ст — 8 030,0 г56 ст — 8 176,0 г57 ст — 8 322,0 г58 ст — 8 468,0 г59 ст — 8 614,0 г60 ст — 8 760,0 г61 ст — 8 906,0 г62 ст — 9 052,0 г63 ст — 9 198,0 г64 ст — 9 344,0 г65 ст — 9 490,0 г66 ст — 9 636,0 г67 ст — 9 782,0 г68 ст — 9 928,0 г69 ст — 10 074,0 г70 ст — 10 220,0 г71 ст — 10 366,0 г72 ст — 10 512,0 г73 ст — 10 658,0 г74 ст — 10 804,0 г75 ст — 10 950,0 г76 ст — 11 096,0 г77 ст — 11 242,0 г78 ст — 11 388,0 г79 ст — 11 534,0 г80 ст — 11 680,0 г81 ст — 11 826,0 г82 ст — 11 972,0 г83 ст — 12 118,0 г84 ст — 12 264,0 г85 ст — 12 410,0 г86 ст — 12 556,0 г87 ст — 12 702,0 г88 ст — 12 848,0 г89 ст — 12 994,0 г90 ст — 13 140,0 г91 ст — 13 286,0 г92 ст — 13 432,0 г93 ст — 13 578,0 г94 ст — 13 724,0 г95 ст — 13 870,0 г96 ст — 14 016,0 г97 ст — 14 162,0 г98 ст — 14 308,0 г99 ст — 14 454,0 г100 ст — 14 600,0 г

Арахис арахис сырой

Скорлупа арахиса | Feedipedia

Благодаря высокому содержанию клетчатки скорлупа арахиса может использоваться в качестве грубого корма в рационе жвачных животных, особенно мясного скота, овец и коз.

Усвояемость и энергетическая ценность

Благодаря высокому содержанию клетчатки скорлупа арахиса имеет высокий потенциал в качестве источника грубых кормов низкого качества, особенно в качестве альтернативы сену в жарком и сухом климате (Palmer, 2010; Aregheore, 2001). Их низкая насыпная плотность затрудняет их транспортировку, и многие переработчики измельчают или гранулируют их.Однако уменьшение длины частиц скорлупы арахиса снижает его эффективность в качестве источника волокна (Utley et al., 1973).

Скорлупа арахиса имеет очень низкую усвояемость. In vitro перевариваемость DM составляет от 16 до 25% (Barton et al., 1974), а перевариваемость in vivo OM составляет около 20% (Alibes et al., 1990). Многие исследования пытались улучшить усвояемость скорлупы арахиса путем химической обработки хлоритом натрия, аммиаком, гидроксидом натрия, газообразным хлором, гипохлоритом кальция и другими более экзотическими химическими веществами.Например, обработка щелочью (6 кг NaOH на 100 кг лузги) скорлупы арахиса увеличивает уровень потенциально усвояемого сухого вещества, в то время как щелочная обработка тонкоизмельченной лузги снижает его в рационах для бычков (Maglad et al., 1986). Обработка мочевиной или грибком ( Trichoderma viride ) увеличивала усвояемость in vitro у овец (Abo-Donia et al., 2014). Однако эти методы обработки могут быть дорогостоящими и / или трудными в использовании из-за опасной природы химикатов и недостаточной осторожности при их использовании.Кроме того, во многих исследованиях подчеркивается устойчивость скорлупы арахиса к химическим обработкам, используемым для улучшения усвояемости (Hill, 2002).

Дойные коровы

Скорлупа арахиса, вероятно, может использоваться в качестве грубого корма для молочных коров при условии, что не обнаружено загрязнения афлатоксинами. Однако было найдено только одно исследование скорлупы арахиса. Для лактирующих молочных коров сравнивались разные источники клетчатки, в том числе смесь скорлупы арахиса и измельченного картона в соотношении 50:50, включенная в 20% рациона.Эта смесь дала такой же отклик, как и другие испытанные источники волокна (шелуха семян хлопка и измельченный картон) (Van Horn et al., 1984).

Мясной скот

Среднесуточный привес и характеристики туши были аналогичными для бычков, получавших рационы, содержащие от 5 до 30% скорлупы арахиса, и немного выше, чем для бычков, получавших рационы без арахисовой шелухи (замененные измельченным зерном кукурузы). Однако концентрации от 10 до 20% арахисовой шелухи оказались лучше для стимулирования набора массы тела по сравнению с диетами с 0 или 30% арахисовой шелухой.Потребление увеличивалось пропорционально количеству шелухи в рационе (Utley et al., 1972). Другие исследования показали, что при правильной переработке и при кормлении на соответствующем уровне в рационе скорлупа арахиса может быть эффективно использована всеми классами мясного скота (Hill, 2002).

Овцы

По сравнению с другими растительными остатками (кукурузные початки или кожура кассавы) включение 30% шелухи арахиса в рационы на основе кукурузы с добавлением мочевины позволило получить приемлемый прирост живой массы, хотя и немного ниже, чем с другими остатками (31 vs. 41 г / сут; Арегхоре, 1996). При выращивании ягнят рационы, включающие 25% обработанной мочевиной шелухи арахиса (4 г / кг сухого вещества мочевины, добавленного в силосованную шелуху за 6 недель до использования), дополнялись арахисовым жмыхом, хлопковым жмыхом или рыбными субпродуктами. Они более эффективно использовались овцами (более высокое потребление корма, дневной прирост и конечная масса тела), чем необработанные базальные рационы (Abdel Hameed et al., 2013). По сравнению с отсутствием лечения или лечением на основе мочевины, диета, основанная на шелухе арахиса, обработанной грибком, предложенная баранам Ossimi, привела к увеличению потребления корма, усвояемости питательных веществ и азотного баланса (потребление и удержание) (Abo-Donia et al., 2014).

Козы

По сравнению с другими растительными остатками (кукурузные початки, кожура кассавы, шелуха стручков какао) включение 30-35% шелухи арахиса в рацион коз привело к аналогичной перевариваемости, добровольному потреблению корма и скорости роста (Aregheore, 1995; Aregheore , 1996). В Замбии во время жаркого засушливого сезона скорость роста, полученная у коз, которых скармливали до 46% скорлупы арахиса при рационе на основе кукурузы с добавлением мочевины, была сопоставима с темпами роста коз долины Гвембе и малых восточноафриканских коз при благоприятных климатических условиях Арегхоре, 2001).Добровольное потребление и скорость роста показали, что при правильной обработке остатков они могут удовлетворить потребности в питании домашнего скота в неблагоприятных погодных условиях.

Влияние содержания наполнителя и компатибилизатора на свойства

Биокомпозиты Agrowaste были получены с использованием наполнителя из арахисовой шелухи и ПЭНП. Обсуждается влияние содержания агронаполнителя и компатибилизатора на механические и биоразлагаемые свойства композитов. Механическое и биоразлагаемое поведение ПЭНП стало заметно хуже, когда он был смешан с агронаполнителем из-за плохой совместимости между двумя фазами.Присутствие MAPE в композитах и ​​его совместимость с агронаполнителем привели к гораздо лучшему диспергированию и однородности агронаполнителя в матрице и, как следствие, к улучшенным свойствам. Показатели водопоглощения и набухания по толщине увеличивались с увеличением содержания наполнителя и уменьшались при добавлении MAPE. Кроме того, потеря веса композитов посредством ферментативного разложения показала, что оба композитных материала являются биоразлагаемыми даже при высоких уровнях добавления наполнителя. Однако композиты с MAPE показали меньшую потерю веса.

1. Введение

Геометрический рост цен на сырье, особенно на сырье, полученное из нефтегазового сектора, и сопутствующие неприятные последствия его использования для окружающей среды вызвали сильное желание использовать сырье из ботанические ресурсы, частично или полностью для производства пластмассовых изделий. Полимеры, полученные из этого класса сырья (нефтехимические продукты), нелегко разлагаются и образуют основные источники твердых бытовых отходов.Эти полимерные отходы представляют большую угрозу для окружающей среды из-за их неразложимости и устойчивости к микробам. Время, необходимое для полного разложения многих синтетических полимеров, оценивается примерно в 50 десятилетий, и в течение этого периода присутствие этих материалов может влиять на природные явления [1].

Для решения проблем, связанных с этими пластиковыми отходами, было предпринято множество попыток получить экологически чистый материал. За последние несколько десятилетий исследования были сосредоточены на замене пластмасс на нефтяной основе биоразлагаемыми материалами, имеющими аналогичные свойства и недорогими.Биоразлагаемые пластмассы могут быть получены из синтетических полимеров, таких как поливиниловый спирт, поликапролактон и полимолочная кислота, или из природных ресурсов, таких как целлюлоза, крахмал и хитин. Недавно было изучено использование отходов сельскохозяйственной биомассы из различных растительных источников для приготовления биоразлагаемых композитов с различными свойствами [2–7]. Использование наполнителей агроваста при изготовлении полимерных композитов необходимо из-за конкурентоспособности натурального волокна с потребляемыми культурами для землепользования.Эти агровасты распространены, дешевы, возобновляемы и полностью биоразлагаемы. Наполнители Agrowaste при использовании для усиления композитов предлагают разумные преимущества по сравнению с минеральными наполнителями [8, 9]: легкий вес, прочность и жесткость, экологичность, экономичность, возобновляемость и обилие. Эти композиты на основе агроваста обладают превосходными техническими характеристиками и представляют собой надежное экологическое решение для утилизации городских отходов.

Однако, как и другие натуральные растительные ресурсы, наполнители агровастов имеют высокую тенденцию к влагопоглощению, имеют плохую поверхностную адгезию к гидрофобным полимерам, не подходят для высокотемпературных применений и подвержены воздействию грибков и насекомых.В настоящее время проведено множество исследований по сочетанию агровастов, таких как скорлупа ядра пальмы [10], шелуха стручка какао [2], шелуха риса [11], скорлупа кокосового ореха [12, 13], агроваста масличной пальмы [8, 14, 15], скорлупа арахиса [16] и термопластические материалы, которые были успешно разработаны.

Арахис ( Arachis hypogaea ) — это растение, которое выращивают в основном для получения плодов, и это одна из важнейших съедобных культур в мире. Арахис часто называют арахисом, потому что его стручки (скорлупа) развиваются под землей.Нигерия — ведущая страна по выращиванию арахиса в Африке и четвертая в мире после Китая, Индии и США. При производстве арахиса образуется большое количество отходов арахисовой скорлупы. Попытки найти утилизацию этих отходов привели в основном к малоценному или ограниченному применению [16]. Как и в случае других целлюлозных материалов, скорлупа арахиса содержит целлюлозу, гемицеллюлозу и микрофибриллы лигнина, которые сгруппированы в макрофибриллы. По химическому составу волокна скорлупы арахиса представляют собой целлюлозу (35.7%), гемицеллюлозы (18,7%), лигнина (30,2%) и зольности (5,9%) [3]. Таким образом, использование шелухи (скорлупы) арахиса в качестве натурального наполнителя в полиолефинах будет способствовать новому способу превращения агровастов в полезные ресурсы для пластмассовой промышленности. Это способствует всеобщему призыву к повышению экологической устойчивости за счет сокращения количества твердых бытовых отходов и образования «отходов к богатству».

Физико-механические свойства термопластичных биокомпозитов в основном зависят от взаимодействия между природным наполнителем и термопластическим материалом.При производстве термопластичных биокомпозитов несовместимость между гидрофильным природным наполнителем и гидрофобной термопластической матрицей является проблемой для исследователей и промышленников.

Наличие полярных гидроксильных групп природного наполнителя почти не смачивается неполярной полимерной матрицей и, таким образом, часто приводит к плохим механическим свойствам при смешивании [17]. Одним из способов улучшения этого взаимодействия является введение связывающих агентов, таких как агенты совместимости. Малеинированные полимеры, такие как малеинированный полиэтилен (MAPE) и малеинированный полипропилен (MAPP), в основном используются в качестве связывающих агентов в биокомпозитах на основе полиэтилена и полипропилена.Несколько исследователей сообщили о разумном улучшении свойств биокомпозитов за счет добавления малеинированных связующих агентов [18–20].

В этом исследовании добавление наполнителя из шелухи арахиса к ПЭНП рассматривалось как способ улучшения механических и биоразлагаемых свойств полимерных материалов, полученных из этих композитов. Таким образом, основная цель данной работы — изучить влияние содержания малеинированного полиэтилена и наполнителя на различные свойства полимерных композитов наполнителя агроваста.

2. Экспериментальная
2.1. Материалы

Матрица из полиэтилена низкой плотности (LDPE), используемая в этом исследовании, была предоставлена ​​Ceeplast Industry Ltd., Аба, Нигерия. Он имеет плотность 0,935 г / см 3 и индекс текучести расплава (MFI) 16 г / 10 мин. Малеинированный полиэтилен (МАРЕ) был получен от Sigma-Aldrich Chemical Corporation. Агроваста, использованная в качестве армирующего наполнителя, представляла собой арахисовую шелуху и была приобретена на местном рынке в Эхиме Мбано, штат Имо, Нигерия. Шелуху обрабатывали для получения наполнителя из шелухи арахиса (PHF).Используемый размер ячейки PHF составлял 300 мкм мкм.

2.2. Приготовление образца

Смеси наполнителя из шелухи арахиса и полиэтилена низкой плотности смешивали в расплаве в экструзионной машине при температуре 120–150 ° C и скорости вращения шнека 50 об / мин для получения композитов PHF / LDPE. Содержание PHF в смесях составляет от 0 до 25 мас.%. Малеинированный полиэтилен (MAPE) использовали в качестве агента, улучшающего совместимость, в количестве 5 мас.% В расчете на загрузку наполнителя. Жидкий расплав экструдировали в виде плоских листов. Эти листы сушили в печи в течение ночи при 70 ° C для снижения содержания влаги и выдерживали в герметичном контейнере не менее 40 часов в соответствии с ASTM D618.

2.3. Испытание на растяжение

Испытания на растяжение проводили с использованием универсального прибора для испытания на растяжение Instron 3366 в соответствии с ASTM D638 с образцами, полученными, как описано. Свойства при растяжении измеряли при комнатной температуре при скорости ползуна 5 мм / мин для определения прочности на разрыв, удлинения при разрыве и модуля Юнга. Были получены усредненные значения пяти прогонов каждого.

2.4. Испытание на изгиб

Испытание на изгиб проводилось с использованием той же универсальной испытательной машины, которая использовалась для испытания на растяжение в соответствии с ASTM D790 с геометрией трехточечного изгиба при скорости ползуна 2 мм / мин для оценки прочности на изгиб и модуля упругости под нагрузкой. ячейка 1 кН.Были рассчитаны средние значения пяти образцов.

2.5. Испытание на удар

Испытание на удар проводилось на прямоугольных образцах с надрезом в соответствии с ASTM D256 с использованием прибора для испытания на удар (прибор для испытания на удар IZOD) с помощью молотка 4,0 Дж. Средние значения были получены из пяти прогонов для каждого образца.

2.6. Испытание на твердость

Испытание на твердость композитных образцов проводилось на испытательной машине Lecco Vickers (LV 700) в соответствии с ASTM D78. Были рассчитаны средние значения пяти прогонов.

2.7. Тест на водопоглощение

Исследование водопоглощения композитов проводилось в соответствии с ASTM D570. Нарезанные образцы размером 30 × 30 × 3 мм 3 сушили в вакууме при 45 ° C в течение 24 ч, взвешивали для получения начальной сухой массы с точностью до 0,001 г, а затем погружали в дистиллированную воду на время 63. дней. Вес образцов измеряли каждые 7 дней, чтобы получить новое изменение веса. Процент водопоглощения был рассчитан следующим образом:

Миндаль, фундук и орех пекан

Целью этой работы было охарактеризовать основные и второстепенные соединения лабораторных и коммерческих масел сладкого миндаля, фундука и ореха пекан.Масла из сладкого миндаля, лесного ореха и ореха пекан были получены с помощью системы экспеллера, а соответствующие коммерческие масла были предоставлены компанией Vital Âtman (BR). Определено содержание триацилглицеринов, жирных кислот, алифатических и терпеновых спиртов, десметил-, метил- и диметилстеринов, сквалена и токоферолов. Олеиновая, пальмитиновая и линолевая кислоты были основными жирными кислотами. Десметилстерины были главными минорными соединениями, причем наиболее распространенным компонентом являлся β -ситостерин.Также были обнаружены низкие количества алифатических и терпеновых спиртов. Основным токоферолом в масле лесного ореха и сладкого миндаля является α -токоферол, тогда как в масле орехов пекан преобладает γ -токоферол. Анализ главных компонентов позволил нам различать образцы, а также различать коммерческие и полученные в лаборатории масла. На тепловой карте выделены основные переменные для каждого образца. В глобальном масштабе эти результаты привели к новому подходу к определению характеристик орехового масла.

1. Введение

Орехи относятся к разным семействам растений, хотя у них есть такие общие особенности, как высокое содержание масла и крупный размер семян по сравнению с другими видами масличных семян. Миндаль ( Prunus dulcis , семейство Rosaceae), фундук ( Corylus avellana , семейство Betulaceae) и орехи пекан ( Carya illinoinensis , семейство Juglandaceae) являются частью основной группы древесных орехов и источников орехового масла. Во многих частях мира, таких как страны Средиземноморья и Северная Америка, древесные орехи являются не только важной масличной культурой, но и важным диетическим компонентом, выступающим в качестве источников энергии и функциональных соединений.На самом деле ореховые масла широко используются в пищевых продуктах, в основном из-за их особого вкуса, а в последнее время — из-за их связи с укрепляющими здоровье эффектами. Кроме того, масла древесных орехов также широко используются в косметической промышленности [1, 2].

Группа миндаля состоит из двух видов, а именно: Prunus dulcis (сладкий миндаль) и Prunus amara (горький миндаль). Миндальное масло получают в основном из сладкого миндаля, который содержит около 50% масла.Эта экстракция коммерчески проводится холодным прессом и / или экстракцией растворителем [3]. По данным ФАО [4], США являются основным производителем миндаля в мире (~ 62% от общего объема производства), за ними следуют Испания и Австралия (~ 5% каждая). С химической точки зрения масло сладкого миндаля было описано как ненасыщенное масло с олеиновой кислотой (O, C18: 1), являющейся основной жирной кислотой (~ 65%) [5], с β -ситостерином в качестве наиболее типичного стерола и α -токоферол как основной токоферол [6, 7].В таблице 1 приведен подробный состав миндального масла, основанный на библиографических исследованиях [1–3, 5–7].

2,5 9012 81,2 3,7126 901 901 901 901 — Состав стерола (% площади) в составе 901 : не определяется и / или не оценивается авторами.
P: пальмитиновая кислота; S: стеариновая кислота; О: олеиновая кислота; L: линолевая кислота; Ln: линоленовая кислота.

Ореховое масло Миндаль Фундук Орех пекан

г Количество масла 9063,19 г 8.10–67 58-74

Состав жирных кислот (% площади) Миристиновая кислота — 14: 0 0–0.07 0–0,1 0,05–0,09
Пальмитиновая кислота — 16: 0 4,7–15,8 4,5–6,5 6,4–7,6
Пальмитолеиновая кислота — 16: 1 0,1–0,3 0,1–0,2
Стеариновая кислота — 18: 0 0,3–2,5 0,4–3,8 2,2–2,8
Олеиновая кислота — 18: 1 76,3–86,5 49,6–62,1
Линолевая кислота — 18: 2 6.21–37,1 6,5–15,6 27,2–37,7
Линоленовая кислота — 18: 3 0–11,1 0,1–1,9 1,4–1,9
0126 Арахидовая кислота 9012: 20: 20 0,04–0,2 0–0,2 0,34

Состав триацилглицерина (% площади) LLLn 0,1
ОЛЛн 0.1 0,5
OLLn 27,6 12,3
OLnO 0,7 —12 1,6131 9013 9013 901 901 —12 9013 901 901 901 9012
OLO 28,0 28,2
LOP 11,3 5,2
PLP 0,52
ООО 13,3 36,5
SLO 1,8 1,4
9012 6,1
СОО 0,6 2,8

Сумма стеролов мг⋅кг −1 2178–2777 1096–6031 18321 18321 Холестерин 0.8–2,3
24-метиленхолестерин 0–0,1
Кампестерол 2,5 4,8–7,4
4,8–7,4 0–0,2
Стигмастерол 2,5 1,3–2,1 17,9
Δ7-Кампестерин 0–0126 0–0,4 Стигмастадиенол + клеростерин 0.9–1,3
β -ситостерин 55,9–95,1 78,1–90,4 82,8
Ситостанол 3,6- Авенастерин 8,5–28,2 1,3–5,2
Δ5,24-Стигмастадиенол 0,3–1,1 Δ7-3–2,3
Δ7-Авенастерол 0,5–1,9

сквален мг⋅кг –1
9013 18613–1 9012 90,06 152,0

Общий токоферол мг⋅кг -1 451,0 25,8–690,8 180,0

содержание Tocotriol 905 и общее содержание
α -токоферол 97.3 53,8–90,6 12,0
β -Токоферол 2,1–4,2
16,09 γ -Токоферол
δ -токоферол
α -токотриенол 0–7.1 0–7,1

Фундук (Corylus avellana) — орех, включенный в средиземноморскую диету, основным мировым производителем которой является Турция, на долю которой в 2012 году приходилось около 63% от общего объема производства [4]. Ядра фундука содержат около 60% масла, которое получают холодным прессом и / или экстракцией растворителем. Масло лесного ореха часто сравнивают с оливковым маслом из-за их сходного состава: олеиновая кислота в качестве основной жирной кислоты и β -ситостерин в качестве основного второстепенного соединения (таблица 1) [8, 9].На самом деле масло лесного ореха обычно используется в косметической промышленности, хотя его нынешняя известность как масло, способствующее укреплению здоровья, расширила его использование в качестве продуктов питания и даже масла для гурманов.

Орех пекан (Carya illinoinensis) происходит из США, но хорошо адаптирован в нескольких странах, включая Австралию, Южную Африку и различные части Южной Америки. В настоящее время более 80% всей мировой продукции производится в США. Этот орех содержит 70% масла, которое легко извлекается с помощью экспеллерного пресса.Также здесь олеиновая кислота является преобладающей жирной кислотой (~ 60%), и, что любопытно, γ -токоферол был указан как основной токоферол, как можно увидеть в Таблице 1 [10–12].

Все эти орехи — многолетние культуры; таким образом, существует особая озабоченность по поводу устойчивости этих культур. Большинство этих культур связано с некоторыми конкретными регионами мира, особенно со Средним Западом США и Востоком Средиземноморья. Таким образом, они очень важны для поддержания торгового баланса этих регионов / стран, обеспечивая экономическое развитие некоторых сообществ.Кроме того, с экологической точки зрения ореховые сады считаются отличным вариантом для естественного лесовосстановления с коммерческой эксплуатационной способностью [2, 13].

Ореховые масла занимают выдающееся место в качестве изысканных и полезных для здоровья масел как по своим сенсорным, так и по своим питательным характеристикам. На самом деле, что касается питательных свойств, большое количество олеиновой кислоты, а также фитостеринов позволяет часто сравнивать эти масла с оливковым маслом.Однако ореховые масла также были указаны как индукторы аллергических реакций у потребителей [14].

Цель данной работы — охарактеризовать основные и второстепенные соединения лабораторных и коммерческих ореховых масел из сладкого миндаля, лесного ореха и ореха пекан, чтобы расширить знания о химическом составе ореховых масел, а также установить , основанные на статистическом подходе, основные соединения, которые позволили бы различать образцы нефти и их происхождение.

2.Материалы и методы
2.1. Chemicals

Ацетон, диэтиловый эфир, гексан, пропионитрил и тетрагидрофуран (THF) были поставлены VWR International (West Chester, PA, USA). Картриджи для твердофазной экстракции кремнезема (Si-SPE) были от Varian (EA Middelburg, Нидерланды). Гидроксид калия (КОН) был от компании Panreac (Montcada i Reixac, Барселона, Испания). Гексаметилдисилазан, пиридин, триметилхлорсилан и стандарты α -, γ -, β — и δ -токоферол были от Merck (Merck Group, Дармштадт, Германия).Стандарты 5 α -холестан-3 β -ол, сквалана и н-эйкозанола были получены от Sigma-Aldrich Co. (Сент-Луис, Миссури, США). Все химические реактивы были не ниже аналитической чистоты.

2.2. Образцы

Орехи сладкого миндаля, фундука и орехов пекан были приобретены в местных продуктовых магазинах Бразилии. Один отдельный образец каждого коммерческого орехового масла из сладкого миндаля, лесного ореха и ореха пекан был предоставлен Виталом Атманом (Учоа, штат Пенсильвания, Бразилия). И орехи, и ореховые масла надлежащим образом хранили при 4 ° C до экстракции и анализа.Каждую химическую характеристику проводили в трех экземплярах.

2.3. Экстракция ореховых масел

Для каждой экстракции 1000 г орехов измельчали ​​на ножевой мельнице и полученные продукты отправляли в систему экспеллерного пресса Komet Oil Press (IBG Monforts Oekotec GmbH & Co.KG., Германия), а затем фильтруется через фильтровальную бумагу, чтобы удалить твердый материал. Каждая лабораторная проба представляла собой объединенную пробу всего процесса экстракции, который выполнялся отдельно для каждого ореха. Полученное масло хранили при 4 ° C до анализа.

2.4. Химическая характеристика
2.4.1. Состав жирных кислот

Состав жирных кислот определяли согласно стандартным методам ИЮПАК [15, 16], как состав метиловых эфиров жирных кислот (FAME) с помощью ГХ. Переэтерификацию масел проводили КОН в метаноле при концентрации 2 моль / л. Хроматографический анализ проводился с использованием системы ГХ Agilent 5890 (Agilent Technologies, Санта-Клара, Калифорния), оснащенной автоматическим пробоотборником жидкости (1 мкл впрыск л), разделенным инжектором (соотношение деления 1:50), полярной капиллярной колонкой (SPTM). -2380, 100 м × 0.Внутренний диаметр 25 мм (внутренний диаметр) × 0,20 мкм (толщина пленки м)) и пламенно-ионизационный детектор (FID). В качестве газа-носителя использовали водород при скорости потока 1,0 мл / мин. Начальная температура печи составляла 180 ° C, а температурный градиент составлял от 180 ° C до 220 ° C со скоростью 3 ° C / мин. Температура детектора и инжектора составляла 225 ° C и 250 ° C соответственно. Идентификацию пиков проводили путем сравнения со стандартной хроматограммой. Данные были описаны как профили жирных кислот путем нормализации площади пика.

Жир | вещество | Британника

Жир , любое нелетучее, нерастворимое в воде, маслянистое или жирное на ощупь вещество растительного или животного происхождения. Жиры обычно твердые при обычных температурах, например 25 ° C (77 ° F), но они начинают разжижаться при несколько более высоких температурах. По химическому составу жиры идентичны животным и растительным маслам, состоящим в основном из глицеридов, которые представляют собой сложные эфиры, образующиеся в результате реакции трех молекул жирных кислот с одной молекулой глицерина ( см. Масло ).

Пальмитиновая кислота — одна из наиболее распространенных жирных кислот, содержащихся в маслах и жирах животных; это также происходит естественным образом в пальмовом масле. Он образуется путем присоединения ацетильной группы к нескольким малонильным группам, связанным одинарными связями между атомами углерода. Эта структура образует насыщенную кислоту — основной компонент твердых глицеридов.

Encyclopædia Britannica, Inc.

Вместе с маслами жиры составляют один из трех основных классов пищевых продуктов, остальные — белки и углеводы.Почти все клетки содержат эти основные вещества. Жир иногда называют природным хранилищем энергии, потому что в пересчете на массу он содержит в два раза больше энергии, чем углеводы или белки. Вероятно, именно в качестве хранилищ или хранилищ концентрированной энергии жиры появляются в репродуктивных органах растений, таких как пыльцевые зерна и семена. Именно этот жир люди получают из растений для использования в пищу или в промышленности. Содержание жира в непродуктивной ткани растений обычно настолько низкое, что восстановление практически невозможно.Тем не менее, большая часть диетических жиров поступает из натуральных пищевых продуктов, не будучи отделенными от других растительных материалов, с которыми они встречаются. Доля жира в этих продуктах питания колеблется от 0,1 процента в белом картофеле до 70 процентов в ядрах некоторых орехов.

Более 90 процентов жира, извлекаемого в мире, получают примерно из 20 видов растений и животных. Большая часть этого отделенного жира в конечном итоге используется человеком в пищу. Следовательно, жировая технология в основном связана с разделением и переработкой жиров в формы, приемлемые для различных диетических обычаев в странах, в которых они будут использоваться.(Для получения дополнительной информации по этому вопросу см. пищевая промышленность.)

Использование жиров

С доисторических времен люди использовали много натуральных жиров как в пищевых, так и в непищевых целях. Египтяне, например, использовали оливковое масло в качестве смазки при перемещении тяжелых строительных материалов. Еще в 1400 г. до н. Э. Они делали смазки для осей из жира и извести, смешанных с другими материалами. Гомер упоминает масло как вспомогательное средство для ткачества, а Плиний говорит о твердом и мягком мыле. Свечи и лампы, в которых используется масло или жир, использовались на протяжении тысяч лет.

Получите эксклюзивный доступ к контенту из нашего первого издания 1768 с вашей подпиской. Подпишитесь сегодня

Коммерческое использование жиров увеличилось по мере расширения понимания химической природы жиров. Шведский химик Шееле в 1779 году обнаружил, что глицерин можно получить из оливкового масла путем нагревания его с глетом (монооксидом свинца), но только примерно в 1815 году французский химик Мишель-Эжен Шеврёль (1786–1889) продемонстрировал это химическая природа жиров и масел.Через несколько лет было завершено отделение жидких кислот от твердых кислот. Маргарин был изобретен французским химиком Ипполитом Меж-Мурье, который в 1869 году получил приз Наполеона III за удовлетворительный заменитель масла. Современный процесс гидрогенизации возник в результате исследований в конце 19 века, которые привели к созданию промышленности по производству шортенинга растительного масла и различных промышленных применений.

После Первой мировой войны химики-органики получили обширные знания сначала о составе жирных кислот, а затем о составе глицеридов.Рост химической промышленности стимулировал одновременное расширение использования жиров в качестве сырья и промежуточных продуктов для множества новых химикатов. Современное применение многих органических химических реакций к жирам и жирным кислотам легло в основу новой и быстрорастущей индустрии жирной химии.

Функции у растений и животных

Универсальное распределение жиров в тканях растений и животных предполагает физиологические роли, которые выходят за рамки их функции в качестве источника топлива для клеток.У животных наиболее очевидная функция жиров — это резерв пищи для снабжения энергией (посредством последующего ферментативного окисления, то есть комбинации с кислородом, катализируемой ферментами). Аналогичным образом можно объяснить накопление жира в семенах овощей на том основании, что это запас пищи для эмбриона. Однако не так просто учесть присутствие большого количества жира в таких фруктах, как оливки, авокадо и пальмы; большая часть этого жира, вероятно, теряется или разрушается до прорастания семян.Жиры выполняют другие ценные функции у растений и животных. Подкожные отложения жира изолируют животных от холода из-за низкой скорости теплопередачи в жире, что особенно важно для животных, живущих в холодных водах или с холодным климатом, например, китов, моржей и медведей.

Жиры, которые были отделены от тканей, всегда содержат небольшие количества тесно связанных неглицеридных липидов, таких как фосфолипиды, стерины, витамины A, D и E, а также различные каротиноидные пигменты. Многие из этих веществ являются жизненно важными эмульгирующими агентами или факторами роста.Другие действуют как агенты, предотвращающие разрушение жиров в тканях и семенах растений, вызванное деструктивным сочетанием с кислородом. Эти второстепенные компоненты, вероятно, присутствуют в жирах в результате их физической растворимости, и, таким образом, жиры служат переносчиками этих веществ в рационах животных.

Многим животным требуется жир, содержащий одну или несколько незаменимых жирных кислот (линолевую, арахидоновую и в ограниченной степени линоленовую), чтобы предотвратить физические симптомы дефицита незаменимых жирных кислот, проявляющиеся в поражении кожи, шелушении, плохом росте волос, и низкие темпы роста.Эти незаменимые жирные кислоты должны поступать с пищей, поскольку они не могут синтезироваться в организме.

Простагландины, открытые лауреатом Нобелевской премии США фон Эйлером из Швеции, представляют собой гормоноподобные соединения, полученные из арахидоновой кислоты. Эти биологически активные жирные кислоты, которые присутствуют в очень незначительных количествах в тканях животных, очевидно, участвуют в сокращении гладких мышц, активности ферментов в метаболизме липидов, функции центральной нервной системы, регуляции частоты пульса и кровяного давления, функции стероидов. гормоны, мобилизация жира в жировой ткани и ряд других жизненно важных функций.

Кукуруза в питании человека. Химический состав и пищевая ценность кукурузы

Кукуруза в питании человека. Химический состав и пищевая ценность кукурузы
Брутто химический состав

Содержание Назад Вперед

Информация о валовом химическом составе кукурузы обильный. Вариабельность каждого основного питательного компонента составляет большой.В таблице 8 обобщены данные по различным видам кукурузы. из нескольких публикаций. Наблюдаемая изменчивость является как генетические и экологические. Это может повлиять на вес распространение и индивидуальный химический состав эндосперм, зародыш и оболочка ядер.

ТАБЛИЦА 8 — Общий химический состав различных виды кукурузы (%)

Сорт кукурузы Влажность Ясень Белок Сырая клетчатка Эфирный экстракт Углеводы
Салпор 12.2 1,2 5,8 0,8 4,1 75,9
Кристаллический 10,5 1,7 10,3 2,2 5,0 70,3
Мучнистый 9,6 1,7 10.7 2,2 5,4 70,4
Крахмалистый 11,2 2,9 9,1 1,8 2 2 72 8
Сладкий 9 5 1 5 12,9 2,9 3.9 69,3
Поп 10,4 1,7 13,7 2,5 5,7 66,0
Черный 12,3 1,2 5,2 1,0 4,4 75,9

Источник: Cortez and Wild-Altamirano, 1972

Крахмал

Основным химическим компонентом ядра кукурузы является крахмал, что обеспечивает от 72 до 73 процентов веса ядра.Другие углеводы — это простые сахара, представленные в виде глюкозы, сахарозы и фруктоза в количестве от 1 до 3 процентов ядра. Крахмал кукурузы состоит из двух полимеров глюкозы: амилозы, по существу линейная молекула и амилопектин в разветвленной форме. Состав кукурузного крахмала контролируется генетически. В кукуруза обыкновенная с зубчатым или кремневым типом эндосперма, амилоза составляет от 25 до 30 процентов крахмала и амилопектина составляет от 70 до 75 процентов.Восковая кукуруза содержит крахмал, 100-процентный амилопектин. Мутант эндосперма под названием удлинитель амилозы (к.и.) вызывает повышение амилозы доля крахмала от 50 процентов и выше. Другие гены, отдельно или в комбинации, может также изменять Соотношение амилозы и амилопектина в кукурузном крахмале (Boyer and Shannon, 1987).

Белок

После крахмала следующий по величине химический компонент ядро — белок.Содержание белка варьируется в обычных разновидностях. примерно от 8 до 11 процентов веса ядра. Большинство из них обнаруживается в эндосперме. Белок в зернах кукурузы был изучал широко. Он состоит как минимум из пяти разных фракции, согласно Ландри и Муро (1970, 1982). В их схема, альбумины, глобулины и количество небелкового азота примерно до 18 процентов от общего азота при распределении 7 процентов, 5 процентов и 6 процентов соответственно.Проламин фракция растворима в 55% изопропаноле и изопропаноле с меркаптоэтанол (ME) составляет 52 процента азота в ядро. Проламин 1 или зеин 1 растворим в 55 процентах изопропанол содержится в самой большой концентрации, около 42 процентов, из которых 10 процентов обеспечивается проламином 2 или зеином 2. щелочной раствор, pH 10 с 0,6% ME, экстрагирует глютелин фракция 2 в количестве около 8 процентов, а глутелин 3 экстрагируется тем же буфером, что и выше, с 0.5 процентов додецилсульфата натрия в количестве 17 процентов для общее содержание глобулина 25 процентов белка в ядро. Обычно небольшое количество, около 5 процентов, остается азот.

Таблица 9 обобщает данные Ортеги, Виллегаса и Васала (1986). о фракционировании белка кукурузы обыкновенной (Tuxpeo-1) и QPM (Бланко Дентадо-1). Фракции II и III — зеин I и зеин. II, из которых зеин I (фракция II) значительно выше в Tuxpeo-1 больше, чем в QPM.Подобные результаты были опубликовано другими исследователями. Количество растворимых в спирте в незрелой кукурузе мало белков. Они увеличиваются по мере увеличения зерна созревает. Когда эти фракции были проанализированы на содержание их аминокислот содержание, фракция зеина, как было показано, имеет очень низкое содержание лизина содержание и недостаток триптофана. Поскольку эти фракции зеина составляют более 50 процентов белка ядра, из этого следует что в белке также мало этих двух аминокислот. В фракции альбумина, глобулина и глютелина, с другой стороны, содержат относительно высокий уровень лизина и триптофана.Другая важной особенностью фракций зеина является их очень высокая содержание лейцина, аминокислоты, участвующей в изолейцине дефицит (Patterson et al., 1980).

Качественная белковая кукуруза отличается от обычной кукурузы массой распределение пяти белковых фракций, упомянутых выше, как показано в Таблице 9. Степень изменения варьируется и зависит от генотипа и культурных условий. Было найдено, однако, что ген opaque-2 снижает концентрацию зеина примерно на 30 процентов.В результате содержание лизина и триптофана выше у сортов QPM, чем у обыкновенной кукурузы.

ТАБЛИЦА 9 — Распределение фракций белка Tuxpeo-1 и Blanco Dentado-1 QPM (цельное зерно)

Дробь

Blanco Dentado-1 QPM

Tuxpeo-1

Белок (мг) Процент белка Белок (мг) Всего в процентах белок
Я 6.65 31,5 3,21 16,0
II 1,25 5,9 6,18 30,8
III 1,98 9,4 2,74 13,7
IV 3.72 17,6 2,39 12,0
В 5,74 27,2 4,08 20,4
Остаток 1,76 8,3 1,44 7,1

Источник: Ortega, Villegas and Vasal, 1986

Пищевая ценность кукурузы как продукта питания определяется аминокислотный состав его белка.Типичная аминокислота значения показаны в Таблице 10 как для обычной кукурузы, так и для QPM. Чтобы установить адекватность содержания незаменимых аминокислот Таблица также включает образец незаменимых аминокислот FAD / ВОЗ. В обычная кукуруза, очевиден дефицит лизина и триптофана по сравнению с QPM. Еще одна важная особенность — высокая содержание лейцина в кукурузе обыкновенной и более низкое значение этой аминокислоты кислота в QPM.

Масла и жирные кислоты

Масло в зернах кукурузы в основном обусловлено росток.Содержание масла контролируется генетически, значения варьируются от 3 до 18 процентов. Средний состав жирных кислот масло некоторых сортов из Гватемалы показано в Таблице 11. Эти значения в некоторой степени различаются; можно ожидать, что масла из разных сортов имеют разный состав. Кукурузное масло имеет низкий уровень насыщенных жирных кислот, т.е. в среднем 11 процентов пальмитиновой и 2 процента стеариновой кислоты. С другой стороны, он содержит относительно высокий уровень полиненасыщенных жирных кислоты, в основном линолевая кислота со средним значением около 24 процентов.Только очень небольшое количество линолевой и арахидоновой кислоты. кислоты не поступали. Кроме того, кукурузное масло относительно стабильна, поскольку содержит лишь небольшое количество линолевой кислоты (0,7 процентов) и высоким уровнем природных антиоксидантов. Кукурузное масло высоко ценится из-за распределения жирных кислот, в основном олеиновая и линолевая кислоты. В этом отношении популяции, которые употребление обезжиренной кукурузы приносит меньше масла и жира кислоты, чем население, потребляющее цельнозерновые продукты.

ТАБЛИЦА 10 — Аминокислоты содержание кукурузы и теозинте (%)

ТАБЛИЦА 11 — Содержание жирных кислот в кукурузе Гватемалы сорта и Nutricta QPM (%)

Сорт кукурузы C16: 0 Пальмитиновый C18: 0 Стеарин C18: 1 олеиновый C18: 2 Линолевая C18: 3 Линоленовая
QPM Nutricta 15.71 3,12 36,45 43,83 0,42
Azotea 12,89 2,62 35,63 48,85
Xetzoc 11,75 3,54 40,07 44.65
Тропический белый 15,49 2,40 34,64 47,47
Санта-Аполония 11,45 3,12 38,02 47,44

Источник: Bressani et al., 1990

Пищевые волокна

После углеводов, белков и жиров пищевые волокна являются химический компонент содержится в наибольшем количестве. Комплекс углеводы в зерне кукурузы поступают из околоплодника и кончик колпачка, хотя он также обеспечивается эндоспермом клеточные стенки и в меньшей степени стенки половых клеток. Общая содержание растворимых и нерастворимых пищевых волокон в зернах кукурузы составляет показано в таблице 12.Различия в растворимом и нерастворимом рационе волокна между образцами малы, хотя QPM Nutricta имеет более высокий уровень общего пищевого волокна, чем обычная кукуруза, в основном из-за более высокого уровня нерастворимой клетчатки. Таблица 13 показывает значения волокон, выраженные как кислотные и нейтральные моющие волокна, гемицеллюлоза и лигнин в цельной кукурузе. Значения, показанные в таблицы аналогичны таблицам, приведенным Sandstead et al. (1978) и Ван Сост, Фадель и Сниффен (1979). Sandstead et al.найденный что кукурузные отруби на 75 процентов состоят из гемицеллюлозы, 25 процентов целлюлозы и 0,1 процента лигнина в пересчете на сухой вес. Очевидно, что содержание пищевых волокон в очищенных от шелушения ядрах будет ниже, чем у целых ядер.

ТАБЛИЦА 12 — Растворимые и нерастворимые пищевые волокна в кукуруза обыкновенная и качественная с белками (%)

Тип кукурузы

Пищевые волокна

Нерастворимый Растворимый Итого
Хайленд 10.94 1,26 1,25 0,41 12,19 1,30
Низменность 11,15 1,08 1,64 0,73 12,80 1,47
QPM Nutricta 13,77 1,14 14,91

Источник: Bressani, Breuner and Ortiz, 1989

ТАБЛИЦА 13 — Нейтральное и кислотное моющее волокно, гемицеллюлоза и лигнин пяти сортов кукурузы (%)

Кукуруза No. Нейтральное моющее средство волокно Кислотное детергентное волокно Гемицеллюлоза Лигнин Ячеистые стенки
1 8,21 3,23 4,98 0,14 9.1
2 10,84 2,79 8,05 0,12 10,8
3 9,33 3,08 6,25 0,13 12,0
4 11,40 2.17 9,23 0,12 13,1
5 14,17 2,68 11,44 0,14 14,2
Среднее значение 10,79 2,27 2,79 0,44 8,00 2,54 0,13 0,01 11.8 2,0

Источник: Bressani, Breuner and Ortiz, 1989

Углеводы прочие

Созревшее зерно кукурузы содержит другие углеводы. чем крахмал в небольших количествах. Общее количество сахаров в ядрах от 1 до 3 процентов, с сахарозой, основным компонентом, обнаруженным в основном в зародыше. Более высокий уровень моносахаридов, дисахариды и трисахариды присутствуют в созревающих ядрах. Через 12 дней после опыления содержание сахара относительно высокий, а крахмал — низкий.По мере созревания ядра сахара упадок и увеличение крахмала. Например, было обнаружено, что сахар достигли уровня 9,4 процента от сухой массы ядра в 16-дневные ядра, но уровень значительно снизился с возраст. Концентрация сахарозы через 15-18 дней после опыления была от 4 до 8 процентов от сухой массы ядра. Эти относительно высокий уровень редуцирующего сахара и сахарозы, возможно, причина почему незрелая обыкновенная кукуруза и, тем более, сладкая кукуруза так хороши нравится людям.

Минералы

Концентрация золы в зерне кукурузы около 1,3 процентов, лишь немного ниже, чем содержание сырой клетчатки. В показано среднее содержание минералов в некоторых образцах из Гватемалы. в таблице 14. Факторы окружающей среды, вероятно, влияют на минерал содержание. Зародыш относительно богат минералами, в среднем значение 11 процентов по сравнению с менее чем 1 процентом в эндосперм. Зародыш составляет около 78 процентов всего ядра. минералы.Самый распространенный минерал — фосфор, обнаруженный как фитат калия и магния. Весь фосфор в зародышах, со значениями для обычной кукурузы около 0,90 процентов и около 0,92 процента в непрозрачной кукурузе-2. Как и большинство зерновых культур, кукуруза с низким содержанием кальция, а также с низким содержанием микроэлементы.

Витамины жирорастворимые

Ядро кукурузы содержит два жирорастворимых витамина: провитамин. А, или каротиноиды, и витамин Е.Каротиноиды содержатся в основном в желтая кукуруза в количествах, которые можно контролировать генетически, в то время как белая кукуруза практически не содержит каротиноидов. Большинство каротиноиды находятся в твердом эндосперме ядра и только небольшое количество в зародыше. Содержание бета-каротина является важный источник витамина А, но, к сожалению, желтая кукуруза не потребляется людьми в таком количестве, как белая кукуруза. Сквибб, Брессани и Скримшоу (1957) обнаружили, что бета-каротин составляет около 22 процентов общих каротиноидов (6.От 4 до 11,3 г на грамм) тремя желтыми образцы кукурузы. Криптоксантин составил 51 процент от общего количества каротиноиды. Активность витамина А варьировала от 1,5 до 2,6 г на грамм. Каротиноиды в желтой кукурузе чувствительны к уничтожение после хранения. Уотсон (1962) сообщил о значениях 4,8. мг на кг кукурузы при уборке урожая, которая снизилась до 1,0 мг на кг после 36 месяцев хранения. Такая же потеря произошла с ксантофиллы. Недавние исследования показали, что конверсия бета-каротин до витамина А увеличивается за счет улучшения белка качество кукурузы.

ТАБЛИЦА 14 — Минеральное содержание кукурузы (в среднем пять образцы)

Минеральное Концентрация (мг / 100 г)
п. 299,6 57,8
К 324,8 33,9
Ca 48,3 12,3
мг 107.9 9,4
Na 59,2 4,1
Fe 4,8 1,9
Cu 1,3 0,2
Mn 1,0 0,2
Zn 4,6 1,2

Источник: Bressani, Breuner and Ortiz, 1989

Другой жирорастворимый витамин, витамин Е, который некоторый генетический контроль находится в основном в зародыше.Источник витамин Е — это четыре токоферола, из которых альфа-токоферол является наиболее биологически активный. Гамма-токоферол, вероятно, больше однако активен как антиоксидант, чем альфатокоферол.

Водорастворимые витамины

Водорастворимые витамины находятся в основном в слое алейронов. ядра кукурузы, затем зародыша и эндосперма. Этот распределение важно в обработке, которая, как будет показано ниже, позже вызывает значительные потери витаминов.Переменная Сообщалось о количестве тиамина и рибофлавина. В контент зависит от окружающей среды и культурных традиций а не из-за генетической природы. Вариативность между разновидностями однако сообщалось о обоих витаминах. Водорастворимый витамин никотиновая кислота привлекает много исследований из-за ее связь с дефицитом ниацина или пеллагрой, которая распространены среди населения, потребляющего большое количество кукурузы (Christianson et al., 1968).Как и другие витамины, ниацин содержание варьируется между сортами, со средними значениями около 20 г на грамм. Особенностью ниацина является то, что он связан и поэтому недоступны для организма животных. Некоторые методы обработки гидролизуют ниацин, тем самым делая его имеется в наличии. Связь потребления кукурузы и пеллагры — это результат низкого уровня ниацина в зерне, хотя экспериментальные данные показали, что дисбаланс аминокислот, например как соотношение лейцина к изолейцину и доступность триптофан также важен (Gopalan and Rao, 1975; Patterson и другие., 1980).

Кукуруза не содержит витамина B12, а зрелое ядро ​​содержит только небольшое количество аскорбиновой кислоты, если таковая имеется. Йен, Дженсен и Бейкер (1976) сообщили о содержании около 2,69 мг на кг доступного пиридоксин. Другие витамины, такие как холин, фолиевая кислота и пантотеновая кислота содержится в очень низких концентрациях.

Изменения химического состава и пищевой ценности в процессе развития зерна

Во многих странах незрелая кукуруза часто используется в пищу. либо приготовленные целиком, как кукуруза в початках, либо молотые, чтобы удалить семенная оболочка с мякотью, используемой для приготовления густых каш или продуктов, таких как тамалитос.Происходящие изменения химического состава при созревании важны. Все соответствующие исследования показали снижение содержания азота, сырой клетчатки и золы в пересчете на сухой вес и увеличение содержания крахмала и эфирного экстракта (например, Ingle, Bietz и Hageman, 1965). Количество растворимых в спирте белков быстро увеличивается по мере созревания ядра, тогда как растворимые в кислотах и ​​щелочах белки уменьшение. Во время этого биохимического процесса аргинин, изолейцин, лейцин и фенилаланин (выраженные в мг на г N) повышаются, в то время как лизин, метионин и триптофан уменьшаются с созреванием.Гмез-Бренес, Элас и Брессани (1968) далее показали снижение качества белка (выражается как эффективность белка соотношение). Таким образом, незрелую кукурузу следует выращивать во время отъема или для детского питания.

Пищевой стоимость кукурузы

Значение зерновых культур для питания миллионов людей людей во всем мире широко признан. Потому что они составляют большую часть рациона питания в развивающихся странах, зерно злаков нельзя рассматривать только как источник энергии, так как они также обеспечивают значительное количество белка.Это также признал, что зерновые злаки имеют низкую концентрацию белка и что качество протеина ограничено недостатком некоторых незаменимые аминокислоты, в основном лизин Ценятся гораздо меньше, однако факт, что некоторые зерна злаков содержат избыток некоторые незаменимые аминокислоты, влияющие на эффективность утилизация белка. Классический пример — кукуруза. Другая крупа зерна имеют те же ограничения, но менее очевидны.

Сравнение пищевой ценности кукурузного белка с качество белка восьми других злаков приведено в Таблице 15, выражается в процентах от казеина.Качество протеина обычных кукуруза похожа на другие злаки, за исключением риса. И то и другое кукуруза opaque-2 и QPM с твердым эндоспермом (Nutricta) имеют качество белка не только выше, чем у обычной кукурузы, но и также значительно выше, чем у других зерновых культур.

Причины низкого качества белков кукурузы были широко изучается многочисленными исследователями. Среди первых были Митчелл и Смэтс (1932), которые получили определенное улучшение роста человека при 8-процентной диете из кукурузы были дополнены 0.25 процентов лизина. подтверждено на протяжении многих лет несколькими авторами (например, Howe, Янсон и Гилфиллан, 1965), а другие (например, Брессани, Элас и Graham, 1968) показали, что добавление лизина к кукурузе вызывает лишь небольшое улучшение качества белка. Эти разные результаты могут быть объяснены вариациями в лизине содержание сортов кукурузы. Работа в этой области привела к открытие Мерцем, Бейтсом и Нельсоном (1964) высокосинусного кукуруза называется непрозрачной-2.

ТАБЛИЦА 15 — Качество белка кукурузы и других злаков зерна

Зерновые Качество белка (% казеин)
Кукуруза обыкновенная 32,1
Кукуруза непрозрачная-2 96,8
QPM 82,1
Рис 79.3
Пшеница 38,7
Овес 59,0
Сорго 32,5
Ячмень 58,0
Просо жемчужное 46,4
Просо пальчиковое 35,7
Teff 56.2
Рожь 64,8

Некоторые исследователи (Hogan et al., 1955) сообщают, что триптофан, а не лизин, является первой ограничивающей аминокислотой в кукуруза, что может быть справедливо для некоторых сортов с высоким содержанием лизина концентрации или для продуктов из кукурузы, модифицированных каким-либо обработка. Все исследователи согласились с тем, что одновременное добавление лизина и триптофана улучшает протеин качество кукурузы значительно; это было продемонстрировано в экспериментальная работа с животными.

Улучшение качества, полученное после добавления лизина и триптофана были небольшими в некоторых исследованиях и выше в других случаях, когда были добавлены другие аминокислоты. Судя по всему, ограничивающей аминокислотой после лизина и триптофана является изолейцин, так как обнаружено в исследованиях кормления животных (Бенсон, Харпер и Эльвехем, 1955). Большинство исследователей, сообщивших о таких результатах указали, что эффект добавления изолейцина является результатом избыток лейцина, который мешает всасыванию и использование изолейцина (Harper, Benton and Elvehjem, 1955; Бентон и др., 1956). Сообщается, что высокое потребление лейцина вместе с белком кукурузы увеличивает ниацин требований, и эта аминокислота может частично отвечать за пеллагра.

Когда наблюдали реакцию на добавление треонина, был приписан этой аминокислотной коррекции аминокислоты дисбаланс, вызванный добавлением метионина. Аналогичная роль можно отнести к добавленному изолейцину, что приводит к улучшению производительность.Точно так же добавление валина, которое приводит к снижение качества протеина может быть нейтрализовано добавление изолейцина или треонина.

В любом случае изолейцин более эффективен, чем треонин, что дает более стабильные результаты. Возможный Объяснение этих результатов заключается в том, что кукуруза не испытывает недостатка в либо изолейцин, либо треонин. Однако некоторые образцы кукурузы может содержать большее количество лейцина, метионина и валина, они требуют добавления изолейцина и треонина помимо лизин и триптофан для улучшения качества белка.В любом слючае, добавление 0,30% L-лизина и 0,10% L-триптофан легко увеличивает качество белка кукурузы на 150. процентов (Брессани, Элас и Грэм, 1968). Многие результаты ограничивающих аминокислот в белке кукурузы зависят от уровень белка в кукурузе. Как указывалось ранее, содержание белка в кукурузе — это генетический признак, на который влияют азотные удобрения. Наблюдаемое увеличение содержания белка сильно коррелирует с зеином или растворимым в спирте белком, с низким содержанием лизина и триптофана и чрезмерным содержанием количество лейцина.Фрей (1951) обнаружил высокую корреляцию между содержание белка и зеина в кукурузе, открытие, которое было подтверждено другими. Используя разные виды животных, разные авторы пришли к выводу, что качество белка низкобелкового кукуруза выше, чем кукуруза с высоким содержанием белка, когда белок в диетах используется то же самое. Однако соотношение веса к весу, кукуруза с высоким содержанием белка немного выше по качеству, чем кукуруза с низким содержанием белка кукуруза. Таким образом, уровень пищевого белка влияет на реакцию. наблюдается при добавлении аминокислот лизина и в частности, триптофан, но также с другими аминокислотами, такими как как изолейцин и треонин.


Содержание Назад Вперед

Преимущества обработанных пищевых продуктов: (EUFIC)

Последнее обновление: 1 июня 2010 г.

1. Введение и определения

Все мы обрабатываем пищу каждый день, когда готовим еду для себя или своей семьи, и практически все продукты проходят определенную обработку, прежде чем они будут готовы к употреблению. Некоторые продукты даже опасны, если их есть без надлежащей обработки.Самое основное определение пищевой промышленности — это «множество операций, с помощью которых сырые пищевые продукты становятся пригодными для потребления, приготовления или хранения». Пищевая промышленность включает в себя любые действия, которые изменяют или превращают сырые растительные или животные материалы в безопасные, съедобные и более приятные на вкус пищевые продукты. В крупномасштабном производстве пищевых продуктов обработка включает применение научных и технологических принципов для сохранения пищевых продуктов за счет замедления или остановки естественных процессов разложения. Это также позволяет предсказуемым и контролируемым образом изменять пищевые качества продуктов.Пищевая промышленность также использует творческий потенциал переработчика для преобразования основного сырья в ряд вкусных привлекательных продуктов, которые обеспечивают интересное разнообразие в диетах потребителей. Без обработки пищевых продуктов было бы невозможно удовлетворить потребности современного городского населения, а выбор продуктов питания был бы ограничен сезонностью.

Термин «обработанные пищевые продукты» используется многими с определенным пренебрежением, предполагая, что обработанные пищевые продукты в некотором роде уступают своим необработанным аналогам.Однако важно помнить, что обработка пищевых продуктов использовалась на протяжении веков для того, чтобы сохранить продукты или просто сделать их съедобными. Фактически, переработка охватывает всю пищевую цепочку от сбора урожая на ферме до различных форм кулинарного приготовления в домашних условиях, и это значительно облегчает обеспечение безопасными продуктами питания населения во всем мире.

Обработка пищевых продуктов может привести к повышению или ухудшению питательной ценности пищевых продуктов, иногда одновременно, и может помочь сохранить питательные вещества, которые в противном случае были бы потеряны при хранении.Например, шоковая заморозка овощей вскоре после сбора урожая замедляет потерю чувствительных питательных веществ. Сырые бобы несъедобны, и простой процесс нагревания (например, кипячения) делает их съедобными, уничтожая или инактивируя определенные антипитательные факторы, которые они содержат. Процесс варки овощей действительно приводит к потере витамина С, но он также может высвобождать некоторые полезные биоактивные соединения, такие как бета-каротин в моркови, которые в противном случае были бы менее доступны во время пищеварения, потому что нагревание разрушает стенки растительных клеток.

На протяжении веков ингредиенты выполняли полезные функции в различных продуктах питания. Наши предки использовали соль для консервирования мяса и рыбы, добавляли травы и специи для улучшения вкуса продуктов, консервированные фрукты с сахаром и маринованные овощи в растворе уксуса. Сегодня потребители требуют и пользуются питательными, безопасными, удобными и разнообразными продуктами питания. Это возможно благодаря методам обработки пищевых продуктов (например, пищевым добавкам и достижениям в области технологий). Пищевые добавки добавляются с определенной целью, будь то обеспечение безопасности пищевых продуктов, повышение питательной ценности или улучшение качества пищевых продуктов.Они играют важную роль в сохранении свежести, безопасности, вкуса, внешнего вида и текстуры продуктов. Например, антиоксиданты предотвращают прогоркание жиров и масел, а эмульгаторы предотвращают разделение арахисового масла на твердую и жидкую фракции. Пищевые добавки дольше защищают хлеб от плесени и позволяют фруктовому джему «застыть», чтобы его можно было намазывать на хлеб.

2. История

Люди веками перерабатывали пищу (см. Таблицу 1). Самые старые традиционные методы включали в себя сушку на солнце, консервирование мяса и рыбы с солью или фруктов с сахаром (то, что мы теперь называем вареньем).Все они работают исходя из того, что уменьшение наличия воды в продукте увеличивает срок его хранения. Совсем недавно технологические инновации в переработке превратили наши продукты питания в богатый ассортимент, который сегодня доступен в супермаркетах. Кроме того, пищевая промышленность позволяет производителям производить продукты с улучшенным питанием («функциональные пищевые продукты») с добавлением ингредиентов, которые обеспечивают определенные преимущества для здоровья помимо основного питания.

2.1 История консервирования

Консервирование возникло в начале 19, и века, когда войска Наполеона столкнулись с серьезной нехваткой продовольствия.В 1800 году Наполеон Бонапарт предложил награду в размере 12 000 франков каждому, кто сможет разработать практический метод сохранения продуктов питания для армий на марше; широко распространено мнение, что он сказал: «Армия идет на живот». После долгих лет экспериментов Николас Апперт представил свое изобретение запечатывания продуктов в стеклянных банках и их приготовления и выиграл приз в 1810 году. В следующем году Апперт опубликовал L’Art de conserver les субстанции animales et végétales (или Искусство сохранения животных and Vegetable Substances), которая была первой в своем роде поваренной книгой по современным методам консервирования продуктов питания.Также в 1810 году англичанин Питер Дюран применил процесс Апперта, используя различные сосуды из стекла, керамики, олова или других металлов, и получил первый патент на консервирование от короля Георга III. Это можно считать происхождением современной банки.

2.2 История заморозки

Современная индустрия замороженных продуктов была основана Кларенсом Бердси в Америке в 1925 году. Он торговал мехом в Лабрадоре и заметил, что филе рыбы, оставленное туземцами для быстрой заморозки в арктических зимах, сохраняет вкус и текстуру свежей рыбы лучше, чем рыба, замороженная при более умеренных температурах в другое время года.Ключом к открытию Бёрдси была важность скорости замораживания, и он первым изобрел промышленное оборудование для быстрой заморозки продуктов. Сегодня мы знаем, что в сочетании с соответствующей обработкой перед замораживанием это быстрое замораживание может обеспечить отличное сохранение пищевой ценности широкого спектра пищевых продуктов.

Таблица 1. Хронологическое развитие технологий пищевой промышленности

Традиционная обработка Более современные процессы
(примерно с 1900 г.)
Самые современные методы
(после 1960 г.)

Консервирование

Варка с экструзией

Сублимационная сушка

Ферментация

Замораживание и охлаждение

Инфракрасная обработка

Замораживание

Пастеризация

Облучение

Сушильный шкаф

Стерилизация

Магнитные поля

Травление

Сверхвысокая температура (УВТ)

СВЧ-обработка

Соление

Упаковка в модифицированной атмосфере

Курение

Омический нагрев

Сушка на солнце

Импульсные электрические поля

Распылительная сушка

Ультразвук

3.Основные преимущества обработанных пищевых продуктов

3.1 Вкусовые качества и сенсорные улучшения

Практически все пищевые продукты перед употреблением проходят определенную обработку. В простейшем случае это может быть очистка банана от кожуры или варка картофеля. Однако для некоторых продуктов, таких как пшеница, требуется довольно тщательная обработка, прежде чем они станут вкусными. Сначала уборка зерна, затем удаление шелухи, стеблей, грязи и мусора. Очищенное зерно обычно варят или измельчают в муку, а затем из него часто превращают другой продукт, такой как хлеб или макароны.

Органолептическое (сенсорное) качество некоторых пищевых продуктов напрямую зависит от технологии обработки. Например, запеченные бобы приобретают кремовую консистенцию в результате тепловой обработки во время консервирования. Экструдированные и воздушные продукты, такие как сухие завтраки или чипсы, было бы почти невозможно производить без крупномасштабного современного оборудования для пищевой промышленности.

3,2 Консервированные и улучшенные питательные свойства

Обработка, такая как замораживание, сохраняет питательные вещества, которые естественным образом присутствуют в пищевых продуктах.Другие процессы, такие как приготовление пищи, иногда могут улучшить пищевую ценность, делая питательные вещества более доступными. Например, приготовление и консервирование помидоров для приготовления томатной пасты или соуса делает биоактивное соединение ликопин более доступным для организма. При аккуратной обработке при переработке какао и шоколада сохраняется уровень флавоноидов, таких как эпикатехин и катехины, но их содержание может быть снижено при плохих условиях обработки. Ликопин и флавоноиды обладают антиоксидантными свойствами, которые, согласно некоторым исследованиям, способствуют поддержанию здоровья сердца и могут снизить риск некоторых видов рака.

Исследователи в настоящее время изучают возможность изменения усвояемости питательных веществ при переработке пищевых продуктов для создания продуктов с повышенной доступностью питательных веществ. Например, похоже, что гомогенизация молока может уменьшить размер капель жира, казеинов и некоторых сывороточных белков. Похоже, что это приводит к лучшей усвояемости, чем необработанное молоко. Ранние исследования показывают, что манипуляции со структурами триациглицерина (вилкообразного основного скелета жиров) также могут влиять на перевариваемость жиров, тем самым изменяя их влияние на риск сердечно-сосудистых заболеваний после приема внутрь.

3.3 Безопасность

Многие технологии обработки обеспечивают безопасность пищевых продуктов за счет уменьшения количества вредных бактерий, которые могут вызывать заболевания (например, пастеризация молока). Сушка, маринование и копчение снижают активность воды (т.е. воду, доступную для роста бактерий) и изменяют pH пищевых продуктов, тем самым ограничивая рост патогенных и вызывающих порчу микроорганизмов и замедляя ферментативные реакции. Другие методы, такие как консервирование, пастеризация и ультравысокая температура (УВТ), уничтожают бактерии посредством термической обработки.

Еще одно преимущество обработки — уничтожение антипитательных факторов. Например, приготовление пищи разрушает ингибиторы протеазы, такие как ингибиторы трипсина, содержащиеся в горохе, фасоли или картофеле. Ингибиторы трипсина представляют собой небольшие глобулярные белки, которые подавляют действие пищеварительных ферментов человека трипсина и химотрипсина, необходимых для расщепления пищевых белков. Если они присутствуют в пищевых продуктах, они могут снизить пищевую ценность пищи, и в исследованиях на животных было показано, что в высоких дозах они токсичны, а некоторые исследования на людях показали аналогичные результаты.Продолжительное кипячение также уничтожает вредные лектины, содержащиеся в бобовых, таких как красная фасоль. Лектины заставляют красные кровяные тельца слипаться и, если они не разлагаются до употребления, вызывают тяжелый гастроэнтерит, тошноту и рвоту.

3.4 Сохранение, удобство и выбор

Пищевая промышленность позволяет продлить срок хранения пищевых продуктов (например, скоропортящихся продуктов, таких как мясо, молоко и продукты из них). Применение упаковки в модифицированной атмосфере означает, что фрукты и овощи могут храниться дома дольше, что означает меньшую частоту покупок свежих продуктов и меньшую потерю порчи.Продуманное хранение и упаковка обеспечивают удобство для потребителя.

Пищевая промышленность позволяет нам наслаждаться разнообразным питанием, которое соответствует быстрым темпам и нагрузкам нашего современного общества. Люди все чаще ездят на отдых за границу, поэтому они могут познакомиться с более широким выбором вкусов и стилей продуктов. Люди также меняют то, как они проводят свое время, и многие предпочитают не готовить еду с нуля. Поэтому, чтобы оправдать ожидания потребителей, производители производят изысканные продукты ресторанного качества или продукты из далеких стран, чтобы готовить и наслаждаться ими у себя дома.

В западном мире наши продукты питания преимущественно основаны на пяти основных культурах — рисе, пшенице, кукурузе, овсе и картофеле. Множество характеристик, к которым мы привыкли в наших продуктах, основаны на этих пяти простых основных продуктах в сочетании с современными технологиями обработки пищевых продуктов. Таким образом, можно сказать, что сегодня мы привыкли к разнообразным продуктам питания, приготовленным из узкого ряда видов растений, которые обеспечивают наше питание. Такое преобразование основных продуктов питания в обработанные продукты было бы невозможно без современных пищевых технологий.

3,5 Уменьшение неравенства и проблем в отношении здоровья

Признано, что у людей с низким доходом менее разнообразный рацион питания, что отражается в более низком потреблении питательных веществ и более низком питательном статусе. Обработка, такая как обогащение некоторых продуктов, таких как мука, хлеб и хлопья для завтрака, сократила количество людей в Европе с низким уровнем питательных веществ. Кроме того, сохранение питательных веществ с помощью таких процессов, как замораживание, позволяет тем, у кого нет доступа к такому широкому спектру продуктов, получить лучшее питание из более узкого диапазона доступных им продуктов.

Хронические болезни, такие как болезни сердца, ожирение и диабет, можно частично лечить с помощью диетических стратегий. В ответ на это производители применили методы обработки пищевых продуктов, чтобы предложить потребителям выбор многих продуктов и блюд с низким или обезжиренным содержанием жира. Возможно, самым простым примером этого является производство полужирного молока (также известного как «обезжиренное» или «полужирное»), при котором жир удаляется из продукта во время обработки — сливки снимаются с верхней части молока. после стадии центрифугирования.Жиры в пище также можно уменьшить, добавив воду или другие ингредиенты, чтобы заменить часть жира и снизить энергетическую плотность. Маргарины с пониженным содержанием жира — хороший тому пример. Добавление воды действительно приводит к более скоропортящимся продуктам, и, следовательно, продукты с пониженным содержанием жира могут содержать дополнительные стабилизаторы и консерванты для восстановления их первоначального срока хранения и стабильности. Помимо продуктов с низким содержанием жира, пищевая промышленность теперь позволяет производить версии многих продуктов с низким содержанием соли, сахара и высоким содержанием клетчатки, что позволяет потребителям выбирать продукты, соответствующие их индивидуальным потребностям в отношении здоровья.

4. Различные методы обработки

4,1 Традиционный

4.1.1 Отопление

Температура пищи повышается до уровня, который подавляет рост бактерий, инактивирует ферменты или даже уничтожает жизнеспособные бактерии. Традиционные методы влажного приготовления включают бланширование, кипячение, приготовление на пару и приготовление под давлением. К сухим методам приготовления относятся запекание, жарка и запекание. В более новых технологиях тепло применяется с помощью электромагнитного излучения, например микроволн.

Техника сверхвысоких температур (УВТ) широко используется в пищевой промышленности.Это включает нагревание пищи до ≥135 ° C в течение не менее 1 секунды с последующим быстрым охлаждением для уничтожения всех микроорганизмов.

Пастеризация — это когда пища нагревается минимум до 72 ° C в течение не менее 15 секунд для уничтожения большинства патогенов пищевого происхождения, а затем быстро охлаждается до 5 ° C.

4.1.2 Охлаждение

Температура пищи снижается, чтобы замедлить ее порчу, либо из-за задержки роста бактерий, либо из-за инактивации ферментов с разрушительными эффектами.Традиционные методы охлаждения включают охлаждение при температуре около 5 ° C и замораживание, при котором температура снижается до ниже -18 ° C (даже до -196 ° C в коммерческих морозильных камерах). Чем ниже температура, тем дольше можно безопасно хранить продукты. Однако резкие перепады температуры в течение продолжительных периодов времени могут привести к потере питательных веществ и разрушению целостных структур пищевых продуктов, так что природа и пищевая ценность этой пищи значительно снижается.

4.1.3 Сушка

При сушке содержание воды в растительной пище снижается до уровня, при котором биологические реакции (такие как активность ферментов и рост микробов) подавляются, и, таким образом, снижается вероятность порчи пищи. Сушка может быть в форме сублимационной сушки (например, трав и кофе), распылительной сушки (например, сухого молока), сушки на солнце (например, томатов, абрикосов) или туннельной сушки (например, кусочков овощей).

4.1.4 Соление

Добавление соли в пищу веками использовалось как метод сохранения пищи.Этот метод работает на том основании, что соль снижает активность воды в консервируемых продуктах, что предотвращает рост организмов, вызывающих порчу. В зависимости от типа пищи аналогичный эффект может быть достигнут с сахаром. Также возможно замедлить или остановить рост и убить определенные микроорганизмы, изменив pH пищи (например, добавив кислоты, такие как уксус, при мариновании).

Есть разные способы добавления соли в пищу, но обычно термин «соление» относится к консервированию пищи с помощью сухой соли.Соление в основном используется для консервирования мяса и рыбы. Соль можно добавлять как таковую или втирать в мясо. Соленая рыба (сушеная и соленая треска) и соленое мясо, такое как итальянский прошутто крудо, являются примерами соленых продуктов. Другие методы обработки пищевых продуктов, в которых важную роль играет соль, — это засолка и маринование.

При рассоле пищу помещают в рассол, насыщенный водой или почти насыщенный солью, метод, который был обычным способом консервирования мяса, рыбы и овощей. Сегодня засаливание продуктов — менее подходящий метод консервирования, но он по-прежнему используется для созревания таких сыров, как фета и халлуми.

Маринование часто подразумевает соление или рассол в сочетании с ферментацией или добавлением уксуса и в основном используется для консервирования овощей (например, квашеной капусты, огурцов, перца, лука и оливок) и рыбы (например, сельди).

Посолка — это обычное название методов обработки пищевых продуктов, в основном используемых для рыбы и мяса, в которых используются комбинации соли и сахара, а также иногда нитраты или нитриты (которые предотвращают рост вредных бактерий Clostridium botulinum и придают мясу привлекательный розовый цвет. ) добавляются в пищу.При посолке пищу иногда также коптят.

4.1.5 Ферментация

При брожении используются определенные дрожжи или бактерии, чтобы придать пище желаемый вкус и текстуру, но это также способ изменить биохимические характеристики пищевых продуктов и тем самым предотвратить рост микроорганизмов, вызывающих порчу.

Дрожжевое брожение используется в таких процессах, как выпечка хлеба и производство алкогольных напитков. Точно так же соевый соус является результатом дрожжевого брожения.

В аэробных условиях, то есть при наличии кислорода, дрожжи превращают сахара и другие углеводы в диоксид углерода и воду. Это то, что делает тесто заквашенным; дрожжи выделяют углекислый газ, который образует пузырьки газа в тесте и заставляет его расширяться. При выпекании губчатая структура закрепляется за счет тепла, и хлеб приобретает мягкую текстуру. Дрожжи погибают от тепла.

При производстве пива, вина и других алкогольных напитков роль дрожжей заключается в образовании алкоголя и частично в газировании напитка.В анаэробных (бескислородных) условиях дрожжи превращают сахар или другие углеводы в спирт (этанол) и диоксид углерода. Если не удалить углекислый газ, напиток станет шипучим. При производстве алкогольных напитков обычно добавляют определенные дрожжевые культуры, но в некоторых производственных процессах напиток подвергается самопроизвольной ферментации, что означает, что ферментация осуществляется дрожжами и другими микроорганизмами, естественным образом встречающимися на винограде или в производственной среде.При выпечке этанол образуется как побочный продукт. Во время закваски процесс брожения меняется с аэробного на анаэробный, так как дрожжи потребляют кислород. Однако во время выпечки спирт испаряется, поэтому хлеб не содержит спирта. Ферментация имеет большое значение для вкуса пива, вина и т. Д., Поскольку дрожжи, помимо этанола и углекислого газа, производят ряд других соединений, которые придают этим напиткам их специфические ароматические характеристики.

Другой тип ферментации, используемый в производстве пищевых продуктов, осуществляется бактериями, продуцирующими молочную кислоту, которые естественным образом присутствуют в пищевых продуктах или добавляются в процессе производства.Бактерии используют лактозу (молочный сахар) или другие углеводы в качестве субстрата для производства молочной кислоты. По мере увеличения содержания молочной кислоты pH снижается, и это может влиять на характеристики пищи, поскольку некоторые белки чувствительны к кислотности. Например, кислая среда коагулирует казеин, белок, содержащийся в молоке, который делает молоко густым и придает йогурту и другим кисломолочным продуктам их особую консистенцию. Не все кисломолочные продукты подвергаются ферментации; молочная кислота как таковая также может быть добавлена ​​в молоко.Среди других пищевых продуктов, ферментированных бактериями, продуцирующими молочную кислоту, — квашеная капуста, соленые огурцы, хлеб на закваске и мясные продукты, такие как салями.

Как упоминалось выше, ферментация повышает стойкость и безопасность пищевых продуктов. Как алкоголь, так и кислотность, а также присутствие безвредных (или полезных) микроорганизмов предотвращают рост разрушающих и вредных бактерий, грибков и т. Д. Спирт является широко используемым дезинфицирующим средством и играет ту же роль, когда присутствует в напитках; он может убивать и препятствовать размножению микроорганизмов.Кислая среда также тормозит рост микробов. В обоих случаях эффективность зависит от уровня алкоголя и кислоты. Безвредные микроорганизмы в пище также влияют на количество нежелательных микробов и скорость их распространения, поскольку конкуренция за субстраты (питательные вещества) возрастает с увеличением количества присутствующих микроорганизмов.

Помимо вкуса и текстуры, стойкости и безопасности пищевых продуктов, ферментация может повысить их пищевую ценность. Микроорганизмы действительно производят аминокислоты, жирные кислоты и определенные витамины, которые усваиваются и используются, когда мы едим пищу.Микробная активность может также снизить содержание антинутриентов, веществ, присутствующих в определенных пищевых продуктах (например, бобовых, злаках, овощах), которые препятствуют усвоению питательных веществ. Уменьшение содержания таких компонентов улучшает усвоение питательных веществ из пищи и тем самым увеличивает ее пищевую ценность. Одним из примеров является закваска, которая содержит молочнокислые бактерии, способные выводить фитаты. Фитат — это антинутриент, присутствующий в цельнозерновой муке, который, благодаря своей способности образовывать комплексы с минералами, может препятствовать всасыванию в кишечнике основных питательных веществ, таких как кальций, железо, цинк и магний.Таким образом, биодоступность минералов в хлебе на закваске выше, чем в хлебе, приготовленном только на дрожжах.

4.1.6 Пищевые добавки

Пищевые добавки — это вещества, которые добавляют в пищевые продукты для определенных технических целей и сгруппированы в зависимости от функции, которую они выполняют при добавлении в пищевые продукты, например консерванты, антиоксиданты, стабилизаторы, вещества против слеживания или упаковочные газы. Только вещества, которые обычно не употребляются в пищу сами по себе и которые обычно не используются в качестве характерных ингредиентов пищи, квалифицируются как добавки.

С увеличением использования пищевых продуктов в нашей пищевой цепи с 19 века, количество используемых добавок увеличилось. Добавки могут быть натуральными, идентичными натуральным или искусственными. Все пищевые добавки в обработанных пищевых продуктах должны быть одобрены национальным регулирующим органом, отвечающим за безопасность пищевых продуктов в каждой стране. На количество и типы добавок в пищевых продуктах устанавливаются строгие ограничения, и любые добавки должны быть включены в список ингредиентов на упаковке продуктов. В Европе одобренным присадкам присваивается префикс «E» для Европы, т.е.грамм. E330 — лимонная кислота, подкисляющая. Лимонная кислота была впервые выделена в 1784 году шведским химиком Карлом Вильгельмом Шееле, который кристаллизовал ее из лимонного сока.

4,2 Преимущества новых технологий

Многие традиционные методы консервирования приводят к неизбежным потерям в содержании питательных веществ и могут отрицательно сказаться на характере и качестве продукта после обработки. Новые технологии, часто называемые «минимальными процессами», нацелены на производство безопасных пищевых продуктов с более высокими питательными качествами, лучшими органолептическими и сохраняющимися качествами.Каждый новый процесс проходит длительные испытания, чтобы полностью оценить его влияние на пищевую ценность.

4.2.1 В микроволновой печи

Микроволновая обработка — это нагревание излучением в отличие от более традиционных методов конвекции или теплопроводности. Микроволны эффективно передаются в воде, но не в пластике или стекле, и отражаются металлами. Именно колебания молекул воды в пище приводят к ее нагреванию. Поскольку вода обычно распределяется в пище неравномерно, для правильного нагрева и безопасного обращения с продуктами необходимо время от времени помешивать.Приготовление пищи в микроволновой печи — это быстрый метод нагрева, который требует небольшого добавления воды и, следовательно, приводит к меньшим потерям питательных веществ, чем другие формы приготовления.

4.2.2 Подготовка модифицированной атмосферы (MAP) / хранение / упаковка

MAP можно определить как «помещение пищевых продуктов в газонепроницаемые материалы, в которых газовая среда была изменена». Он относится к контролируемым изменениям атмосферы, в которой готовятся, упаковываются или хранятся пищевые продукты, которые вместе подавляют рост бактерий.Обычно в качестве газов используются кислород, диоксид углерода и азот. MAP может представлять собой вакуумную упаковку или введение газа во время упаковки. Совсем недавно MAP превратился в активную упаковку, в которой атмосфера постоянно меняется в течение срока годности продукта. Например, можно использовать поглотители кислорода или пленки, выделяющие диоксид углерода. Снижение уровня кислорода и повышение уровня углекислого газа приводят к подавлению роста микробов.

Мясо, рыба и сыр являются примерами так называемых недыхающих продуктов, которым нужны пленки с очень низкой газопроницаемостью для поддержания исходной газовой смеси внутри упаковки.С другой стороны, взаимодействие упаковочного материала с продуктом важно для вдыхания продуктов, таких как фрукты и овощи. Можно адаптировать газопроницаемость упаковочной пленки к дыханию продуктов, так что в упаковке установится равновесие газовой смеси и увеличится срок хранения продукта.

4.2.3 Облучение

Обработка ионизирующим излучением — это особый вид передачи энергии, при котором часть энергии, передаваемой за обработку, достаточно высока, чтобы вызвать ионизацию.Он используется для контроля и нарушения биологических процессов с целью продления срока хранения свежих продуктов, а также может применяться для стерилизации упаковочных материалов. Благоприятные биологические эффекты облучения включают подавление прорастания, задержку созревания и дезинсекцию насекомых. Микробиологически облучение подавляет патогенные и другие микроорганизмы, вызывающие порчу. Основное преимущество облучения состоит в том, что оно проходит через пищу, убивает микроорганизмы, но поскольку оно не нагревает пищу, оно оказывает незначительное влияние на состав питания.Белки и углеводы могут до некоторой степени расщепляться, но на их пищевую ценность это мало влияет.

В соответствии с европейским законом о пищевых продуктах (1999/2 / EC и 1999/3 / EC) обработка ионизирующим излучением определенного продукта питания может быть разрешена только в том случае, если:

  • есть разумная технологическая потребность
  • не представляет опасности для здоровья
  • выгодно потребителям или
  • он не используется в качестве замены гигиенических и санитарных методов, надлежащей производственной или сельскохозяйственной практики.

В соответствии с европейским законодательством, любой пищевой продукт, облученный как таковой или содержащий облученные пищевые ингредиенты, должен четко указывать это на этикетке.

4.2.4 Омический нагрев

Это тепловой процесс, при котором тепло генерируется внутри за счет прохождения через пищу переменного электрического тока, который действует как электрическое сопротивление. Омический нагрев также известен как «резистивный нагрев» или «прямой резистивный нагрев». Он не зависит от передачи энергии частицами воды, поэтому это важная разработка для эффективного нагрева продуктов с низким содержанием воды и твердых частиц.Это кратковременный высокотемпературный метод (HTST), который снижает вероятность высокотемпературной чрезмерной обработки и связанной с этим потери питательных веществ. Еще одно преимущество омического нагрева заключается в том, что он сохраняет деликатно структурированные продукты, такие как клубника.

4.2.5 Сверхвысокое давление

Технология высокого давления подвергает пищевые продукты воздействию давления 100–1000 мегапаскалей обычно в течение 5–20 минут. Он имеет ряд ключевых атрибутов, включая инактивацию микроорганизмов, модификацию биополимеров, например образование геля, и сохранение качества, например цвета, вкуса и питательных веществ.Это связано с его уникальной способностью напрямую влиять на нековалентные связи (такие как водородные, ионные и гидрофобные связи), оставляя ковалентные связи неповрежденными, и то и другое без использования тепла. Как следствие, он дает возможность удерживать витамины, пигменты и ароматизирующие компоненты, инактивируя микроорганизмы или ферменты, которые в противном случае могли бы отрицательно повлиять на функциональность пищевых продуктов из-за их порчи.

4.2.6 Световые импульсы

В этом методе используются прерывистые вспышки белого света (20% УФ, 50% видимого и 30% инфракрасного) с интенсивностью, которая, как утверждается, в 20 000 раз превышает интенсивность солнечного света у поверхности земли.Типичная частота импульсов — от одной до двадцати вспышек в секунду, которые приводят к значительному сокращению количества микроорганизмов на поверхности при использовании на мясе, рыбе и хлебобулочных изделиях. Этот метод идеально подходит для обеззараживания поверхности упаковочных материалов и лучше всего работает на гладких, чистых от пыли поверхностях.

4.2.7 Импульсные электрические поля (ИЭП)

Этот процесс включает приложение повторяющихся коротких импульсов электрического поля высокого напряжения (10-50 кВ / см) к перекачиваемой жидкости, протекающей между двумя электродами.Он не использует электричество для выработки тепла, а вместо этого инактивирует микроорганизмы, разрушая стенки и мембраны клеток, подвергающихся воздействию импульсов высокого напряжения. PEF в основном используется в охлажденных или комнатных продуктах, и поскольку он применяется всего одну секунду или меньше, он не приводит к нагреванию продукта. Именно по этой причине он имеет преимущества в питании по сравнению с более традиционными тепловыми процессами, которые разрушают чувствительные к теплу питательные вещества.

5. Влияние обработки на пищевую ценность

Обработка пищевых продуктов может привести к улучшению или ухудшению питательной ценности пищевых продуктов.Простые процессы приготовления пищи на домашней кухне приводят к неизбежному повреждению клеток растительной пищи, что приводит к вымыванию необходимых витаминов и минералов. Однако, если мы будем осторожны в обработке продуктов и выберем разнообразные обработанные продукты, они могут сыграть важную роль в питательной и сбалансированной диете. В отличие от домашней среды, производители продуктов питания имеют доступ к промышленным масштабам, быстрым методам обработки, которые вызывают минимальные потери питательных веществ, и они используют процессы, которые действительно помогают высвобождать положительные питательные вещества (например, ликопин при приготовлении помидоров) или устранять вызывающие озабоченность соединения (например, лектины в бобовых).

5.1 Витамины и минералы

Есть 13 витаминов, которые необходимы организму в небольших количествах, но, тем не менее, необходимы. Четыре из них жирорастворимы (A, D, E и K), а остальные девять растворимы в воде (витамины группы C, B). Ни одна пища не содержит всех витаминов, поэтому для адекватного потребления необходима сбалансированная и разнообразная диета. Обработка по-разному влияет на разные витамины. Например, водорастворимые витамины, как правило, более чувствительны к обработке и часто частично теряются при кипячении и термообработке.Однако более новые «нетепловые» процессы, такие как омический нагрев или обработка сверхвысоким давлением, могут помочь сохранить витамины, поскольку они подвергают пищу воздействию более низких температур (если таковые имеются), и процессы происходят в течение очень короткого времени. В некоторых случаях обработанные продукты содержат больше витаминов, чем свежие. Например, замороженные овощи, собранные и замороженные в течение нескольких часов, сохраняют больше витамина С, чем их свежие аналоги, потому что при хранении в охлажденном виде со временем теряется больше витамина С, чем при хранении в замороженном виде.

Минералы — это неорганические элементы, в которых наш организм нуждается в небольших количествах, обычно получаемых в достаточном количестве при употреблении обычной смешанной диеты. Обработка пищевых продуктов может иметь важное положительное влияние на доступность минералов из продуктов. Например, фитаты в цельнозерновых злаках ингибируют всасывание железа и цинка, но во время ферментации высвобождаются ферменты, которые разрушают фитаты и увеличивают доступность железа и цинка в тесте.

В качестве меры общественного здравоохранения в настоящее время различные продукты питания обогащены витаминами и минералами.Готовые к употреблению хлопья для завтрака часто содержат железо, и оно стало одним из основных источников железа в рационе молодых женщин, потому что их потребление красного мяса снизилось (красное мясо имеет естественный высокий уровень легко усваиваемого железа). Дефицит железа — одна из самых серьезных проблем, связанных с дефицитом питательных веществ в Европе, от которой страдают до 30% молодых женщин. В некоторых странах каши для завтрака и мука обогащены фолиевой кислотой как средство повышения фолиевой кислоты у женщин детородного возраста.Это связано с признанием того, что низкий уровень фолиевой кислоты во время беременности связан с повышенным риском дефектов нервной трубки (например, расщелины позвоночника) у будущих детей.

5.2 Углеводы и клетчатка

Для моно- и олигосахаридов незначительное разложение происходит при температурах вплоть до тех, которые используются при UHT-обработке, но есть несколько реакций, которые могут повлиять на качество питания. Например, некоторые сахара могут изменить свою молекулярную структуру во время нагревания, что может повлиять на усвояемость.Это может быть полезно для уменьшения присутствия неперевариваемых олигосахаридов (таких как стахиоза или рафиноза, присутствующих в бобовых и некоторых других продуктах), которые вызывают метеоризм при чрезмерном употреблении.

В настоящее время проводятся обширные исследования по изучению влияния обработки на растворимость и усвояемость определенных волокон и крахмалов, таких как резистентный крахмал. Низкая усвояемость может быть полезной, поскольку было показано, что углеводы с медленным высвобождением могут снизить повышение уровня сахара в крови и инсулина, которое происходит после еды.Избыточный уровень глюкозы и инсулина в крови был связан с развитием инсулинорезистентности, потенциально являющейся предшественником диабета II типа. Было показано, что экструзионная варка увеличивает «растворимость» волокна. Растворимые волокна, такие как β-глюкан, могут снижать уровень холестерина в сыворотке крови, что способствует снижению риска сердечно-сосудистых заболеваний.

5,3 Жиры и белки

Большинство жиров достаточно стабильны во время обработки. Однако ненасыщенные жирные кислоты склонны к окислению и прогорклости при хранении.Применение упаковки с модифицированной атмосферой, антиоксидантов и асептической упаковки может привести к значительному увеличению времени хранения, что снимает эти опасения.

Белки обычно денатурируются при высоких температурах, что может оказывать пагубное воздействие на структуру пищи. Однако это может быть полезно с точки зрения питания, поскольку может означать повышение усвояемости белка. Новое захватывающее исследование также показывает, что новые методы обработки пищевых продуктов, такие как высокое давление, приложение электрического поля или облучение, могут оказывать влияние на пищевые аллергены.Уничтожение антипитательных белков, таких как авидин, в сырых яйцах является преимуществом во время обработки, поскольку оно позволяет абсорбировать другие связанные питательные вещества. Авидин прочно связывается с биотином сырых яиц и тем самым блокирует абсорбцию этого витамина B, но связь освобождается, когда авидин денатурируется при нагревании.

6. Почему обработанные пищевые продукты так важны для современного общества?

В настоящее время трудно придерживаться диеты, основанной только на свежих, необработанных продуктах.Основная часть потребностей нашей семьи в продуктах питания поступает из обработанных пищевых продуктов, которые добавляют разнообразия нашему рациону и делают нашу напряженную жизнь удобнее. Обработанные пищевые продукты позволяют потребителям реже совершать покупки и запасаться широким ассортиментом продуктов, на основе которых можно приготовить разнообразные и питательные блюда.

Многие обработанные пищевые продукты столь же питательны, а в некоторых случаях даже более питательны, чем свежие или приготовленные в домашних условиях продукты, в зависимости от способа их обработки. Например, уровни фолиевой кислоты и тиамина в бобах лучше переносят процесс консервирования, чем длительное замачивание и приготовление, необходимые для домашнего приготовления из сушеных бобов.Замороженные овощи обычно перерабатываются в течение нескольких часов после сбора урожая. В процессе замораживания потери питательных веществ незначительны, поэтому замороженные овощи сохраняют высокое содержание витаминов и минералов. Напротив, свежие овощи собирают и отправляют на рынок. Могут пройти дни или даже недели, прежде чем они дойдут до обеденного стола, и витамины постепенно теряются с течением времени, независимо от того, насколько аккуратно овощи транспортируются и хранятся. Рыбные консервы — хороший источник кальция, потому что рыбу часто консервируют без костей, а обработка делает мелкие кости более мягкими и съедобными.

Включение широкого спектра пищевых продуктов, будь то свежие, замороженные, консервированные или обработанные иным образом, позволяет потребителям достигать рекомендуемого суточного потребления. Например, консервированные фрукты, фруктовые соки и смузи, а также замороженные овощи засчитываются в популярную цель «5 порций фруктов и овощей в день». Ключевым моментом для потребителей является сбалансированность и разнообразие — ни один продукт питания не обеспечивает достаточного количества питательных веществ для выживания, и каждый метод обработки влияет на питательные вещества по-разному.

7.Факты о пищевой промышленности

  • Люди веками перерабатывали пищевые продукты, сохраняя их для использования в будущем и для обеспечения их безопасности.
  • Пищевая промышленность позволяет продлить срок хранения скоропортящихся пищевых продуктов, тем самым увеличивая выбор и уменьшая зависимость от сезонности.
  • Потери при хранении свежих пищевых продуктов обычно больше, чем потери, связанные с обработкой пищевых продуктов, и переработка пищевых продуктов может повысить питательную ценность некоторых пищевых продуктов.
  • Добавление питательных веществ в продукты питания и напитки используется во всем мире в качестве меры общественного здравоохранения и является экономически эффективным средством обеспечения питательного качества пищевых продуктов.
  • Консервированные, свежие и замороженные фрукты и овощи содержат питательные вещества, необходимые для здорового питания. Употребление исключительно свежих фруктов и овощей игнорирует питательную ценность обработанных пищевых продуктов, которые включают как промышленные, так и пищевые продукты, обработанные в домашних условиях.

Ссылки и дополнительная литература

Генри CJK и Чепмен К.(2002). Справочник по питанию для кухонных комбайнов. Woodhead Publishing Ltd.

Международный совет по пищевой информации (2009 г.). От фермы до вилки: вопросы и ответы о современном производстве продуктов питания.

MacEvilly C и Peltola K (2003). Влияние агрономии, хранения, обработки и приготовления пищи на биологически активные вещества в продуктах питания. В растениях, диете и здоровье Под ред. Гейл Голдберг. Издательство Blackwell Science Publishing.

Mills EN, et al. (2009). Влияние обработки пищевых продуктов на структурные и аллергенные свойства пищевых аллергенов.

Leave a Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *