Хондропротекторные препараты: хондропротекторные препараты для коленных суставов прошедшие одобрение

Содержание

что за препараты, классификация, как действуют?

Боли в суставах и спине, связанные с дегенеративными изменениями и истончением хряща – одна из самых частых причин обращения к врачу. Изменениям в составе суставного хряща, его истончению и повреждению способствую «взросление» человека, неадекватная нагрузка на суставы и позвоночник – как недостаточная активность, так и чрезмерная нагрузка при избыточном весе или подъеме тяжестей.

Очень часто в схему лечения суставов и позвоночника включают препараты-хондропротекторы. Разберем, что это за препараты, какова их функция, оказывают ли они эффект и в каких случаях.

Мнение касательно хондропротекторов отличается у разных специалистов и ученых.

Что это за препараты

Хондропротекторы призваны защищать суставной хрящ от истончения и разрушения, а также служить строительным материалом для синовиальной жидкости – смазки, которая находится внутри суставов и способствует скольжению суставных поверхностей костей относительно друг друга.

 

В состав хондропротекторов входят хондроитин и глюкозамин. Это структурные компоненты хрящевой ткани, которые необходимы для постоянного процесса воспроизводства здорового хряща. 

Цель их приема – уменьшение боли и скованности в суставах, восстановление структуры хряща. 

Классификация 

  • В группе хондропротекторов существуют 3 поколения:
  • Вытяжки из продуктов животного происхождения (в том числе хрящи рыб, ракообразных): алфлутоп, румалон, мукартрин. 
  • Монокомпонентные препараты: 
    • — на основе хондроитин сульфата: структум, мукосат, хондроксид; 
    • — на основе глюкозамина: дона, эльбона, стопартроз.
  • Комбинированные средства, в состав которых входят глюкозамин, хондроитин сульфат и дополнительные компоненты, например витамины, нестероидные противовоспалительные препараты: терафлекс, артрогард, геладринк.

Также препараты различаются по способу введения: 

  • для приема внутрь в форме порошков, капсул или таблеток;
  • для инъекций внутримышечных или внутрисуставных растворы;
  • для наружного применения – мази.

Как действуют хондропротекторы

Компоненты хондропротекторов — глюкозамин и хондроитин выступают строительным материалом для хрящей и синовиальной жидкости сустава.

При хроническом разрушении тканей возникает повышенный спрос на строительные молекулы, суставы «захватывают» их наиболее охотно

Известно, что при дегенеративных заболеваниях суставов — артроз, остеохондроз хрящ истончается, количество синовиальной жидкости уменьшается. Таким образом, процессы распада превалируют над процессами синтеза.

Считается, что дополнительное поступление строительных веществ благотворно скажется на восстановлении суставов. И правда, известно, что при хроническом разрушении тканей возникает повышенный спрос на строительные молекулы, суставы «захватывают» их наиболее охотно. В таком свете прием препаратов со строительными материалами в нем становится оправдан.

Однако основные сложности возникают со всасыванием этих веществ и их доставкой в пораженный сустав.

Что происходит с хондропротекторами в нашем организме?

При приеме внутрь молекулы должны всосаться в тонком кишечнике и попасть в кровоток и затем быть доставлены к суставу.

Процесс всасывания при приеме пищи, например, происходит следующим образом: крупные молекулы белков, жиров и углеводов расщепляются до маленьких аминокислот, жирных кислот и моносахаридов и в таком виде поступают в кровь.

Однако, хондроитин сульфат – это крупная, сложная молекула, которая не может целиком преодолеть кишечный барьер. Молекула претерпевает разрушение до составных частей и затем уже попадает в кровоток. Такой процесс происходит частично, а другая часть больших молекул выводится из организма в неизменном виде. 

Что же касается глюкозамина – они меньше, и всасываются в кишечнике практически в неизмененном виде и поступают в органы-мишени как стройматериал. Однако, глюкозамин может синтезироваться в нашем организме из глюкозы, которую мы получаем с пищей. Необязательно для этого принимать добавки.

А что насчет инъекционных форм? 

При внутримышечном введении лекарство минует процесс всасывания и сразу поступает в кровоток. Для маленьких молекул это не проблема, а вот крупные молекулы могут вызывать аллергические реакции, как местные, так и общие.

Введение препарата непосредственно в полость сустава является предпочтительной. Тогда не возникает проблемы всасывания или аллергических реакций и препарат попадает сразу в сустав. Однако хрящ плохо питается из омываемой синовиальной жидкости и даже здесь хондропротекторы окажутся не самыми эффективными. Лучше с задачей замены синовиальной жидкости справляются препараты гиалуроновой кислоты. Но показано, что экзогенная гиалуроновая кислота долго в суставе не задерживается (около суток), а сохранение эффекта предполагается на 6-9 месяцев. 

Чтобы препарат начал работать ему необходимо пройти непростой путь к суставу.

За и против

Препараты имеют очень небольшой перечень побочных проявлений, то есть, практически, безвредны. Если не считать аллергических реакций и редких диспепсических явлений.

Курс лечения обычно длительный, от 3 до 6 месяцев, быстрого эффекта ожидать не стоит

Наибольшая эффективность терапии возможна на ранних стадиях изменений суставов, когда может не быть еще клинических проявлений

Низкая биодоступность хондроитина при приеме внутрь, способность без проблем синтезировать глюкозамин организмом человека – делают пероральный прием сомнительно оправданным. Дефицит субстрата трудно представить даже при вегетарианском типе питания.

Отсутствие больших клинических исследований, доказывающих эффективность хондропротекторов. В проведенные исследования эффективность оценивали субъективно, путем опроса и оценки выраженности болевого синдрома и скованности, что не исключает эффект плацебо.

Достаточно высокая стоимость длительного курса лечения тоже нужно принимать во внимание при выборе тактики лечения.

Кстати, уважаемые организации ВОЗ и FDA не включили хондропротекторы в рекомендации для лечения болезней суставов.

В США препараты хондроитина отнесены не к лекарственным средствам, а к пищевым добавкам, для разрешения их использования не требуется высокого уровня доказанности их эффективности.

Глюкозамин и хондроитин: содержание в препарате Терафлекс

Хондроитин и глюкозамин образуются в хрящевой ткани в достаточном количестве, но обычно только в молодом и здоровом организме. С возрастом хондроциты становятся менее активными и производят все меньше этих необходимых для сустава веществ. В результате, в хряще начинаются дистрофические процессы: он теряет свою прочность, упругость, хуже амортизирует. Снижается количество синовиальной жидкости — головки сустава уже не так легко двигаются относительно друг друга, нарушается питание суставов. Тогда и появляются хруст, пощелкивание, неприятные ощущения при резких и неловких движениях, повышенных нагрузках.

Внутрисуставная жидкость обеспечивает хрящ полезными веществами: если ее мало, ткани «голодают». Это еще больше усугубляет процесс дегенерации. Впрочем, вначале он обратим: при достаточном количестве глюкозамина и хондроитина хрящ мог бы восстановиться, но дефицит этих веществ обрекает человека на постепенное ухудшение состояния суставов. На фоне разрушения хрящевой ткани развиваются артрозы, остеоартриты, сопровождающиеся болями, воспалением. При прогрессировании заболеваний возможны деформации и значительное ограничение движений в суставах.

При нехватке глюкозамина и хондроитина в организме необходимо обеспечить их поступление извне. Например, с едой: холодец, заливное, различные желе содержат хондроитин, а наши далекие предки получали его, съедая хрящи и жилы животных. И все же количество необходимого вещества в пище не так велико, да и невозможно постоянно питаться перечисленными продуктами. Поэтому в качестве их источника обычно применяют лекарственные препараты.

Препараты для здоровья суставов

Группа заболеваний суставов очень обширна: в нее входят воспалительные (артриты, бурситы, синовиты) и дегенеративные (артрозы, хондрозы), последствия разных травм. Специфика их такова, что редко встречается изолированный патологический процесс одного вида, чаще они протекают параллельно, в некоторых случаях один даже становится причиной другого.
Например:

  • на фоне дистрофических процессов часто развиваются воспалительные — так формируются остеоартриты;
  • ослабленный дистрофическими процессами сустав проще травмировать;
  • перенесенная травма может запустить процесс дегенерации хряща или спровоцировать воспаление;
  • острое воспаление (артрит, бурсит) редко проходит бесследно — питание хряща серьезно нарушается, что становится причиной дегенеративных изменений и хронических воспалительных процессов.

По причине размытых границ каждого заболевания их часто объединяют в единую группу под названием «артропатии». Конечно, при возможности ставят конкретный диагноз — это важно для правильного лечения. Терапия ревматоидного артрита и, например, хламидийного, будет разной. Но при любой артропатии важно восстановить хрящевую ткань. При некоторых заболеваниях ее разрушение — главная причина, при других — следствие, но страдает она всегда. С этой целью назначают хондропротекторы, в состав которых обычно входят глюкозамин и хондроитин.

Хондропротекторы нужно принимать длительными курсами (от 3 месяцев до полугода и больше) — необходимо сформировать достаточный запас необходимых хрящу веществ, чтобы в нем начались процессы восстановления. Побочных эффектов у препаратов этой группы практически не бывает. Поэтому хондропротекторы принимают не только при выраженных проблемах с суставами, но и чтобы избежать их в перехода в более тяжелую стадию1.

Для лечения лучше выбирать не биологически активные добавки, а полноценные лекарственные препараты, которые прошли все необходимые исследования, где подтвердили свою эффективность и безопасность. Также стоит обращать внимание на состав: комплекс глюкозамина и хондроитина эффективнее, чем каждый компонент в отдельности2. В качестве примера комбинированного препарата можно назвать «Терафлекс», в состав которого входят глюкозамин и хондроитина сульфат, усиливающие действие друг друга2.

Сравнительный анализ способов введения препаратов хондропротекторного действия у лабораторных животных

Семенов, К.А. and Гаврилин, П.Н. and Семенов, Д.К. (2019) Сравнительный анализ способов введения препаратов хондропротекторного действия у лабораторных животных. Вісник стоматології, Т. 31 (№ 1). pp. 7-11. ISSN 2078-8916

Abstract

Лабораторным путем доказать эффективность комбинированного способа введения хондропротекторов в структуры височно – нижнечелюстного сустава человека не предоставляется возможным. На лабораторных животных доказана эффективность комбинированного способа введения хондропротекторов, без нарушения целостности структур сустава, что позволяет в дальнейшем рекомендовать данный способ пациентам, с заболеваниями суставов и даёт перспективу дальнейших клинических исследований по эффективности комбинированного метода введения препаратов у человека без нарушения целостности структур суставов.

Провели сравнительный анализ разных способов введения хондропротекторов в коленный сустав у лабораторных животных. Материалом экспериментального исследования служили 25 половозрелых беспородных восьмимесячных крыс – самцов. Перед началом эксперимента животные были распределены на 5 групп по пять в каждой группе. Для экспериментального наблюдения был выбран левый коленный сустав. На основании анализа результатов исследования максимальная оптическая плотность исследуемой надосадочной жидкости гомогенатов коленных суставов была получена в первой и второй группах. В данных группах проводили парентеральное введение Синарты и дополнительное втирание Хондроксид геля в первой группе и электрофорез с Хондроксид гелем во второй группе. Получены достоверные отличия при использовании разных способов введения лекарственных веществ хондропротекторного действия на структуры сустава. Наиболее эффективным способом накопления глюкозаминов в структурах сустава является комбинация внутримышечного введения препарата и местное введение: путем втирания или электрофореза.
Цифровые значения оптической плотности гомогенатов суставов свидетельствуют об эффективности кумулятивного способа введения в структуры сустава глюкозаминов и хондроитин сульфатов.

Item Type: Article
Uncontrolled Keywords:Лабораторные животные (крысы), хондропротекторные препараты, путь введения лекарственных препаратов; лабораторні тварини (щури), хондропротекторні препарати, шлях введення лікарських препаратів; Laboratory animals (rats), chondroprotective drugs, route of administration of drugs.
Subjects:Experimental medicine
Divisions:Faculty of Postgraduate Education > Department of Dentistry FPE
Depositing User: Елена Шрамко
Date Deposited:12 Mar 2020 13:19
Last Modified:12 Mar 2020 13:20
URI:http://repo. dma.dp.ua/id/eprint/5136

Actions (login required)

View Item

Хондропротекторы. Как они могут помочь больным суставам?

9 октября 2016

Лечение остеоартрита направлено на купирование симптомов заболевания, профилактику прогрессирования структурных изменений, максимально возможное сохранение функции суставов, благодаря чему улучшается качество жизни пациентов.

Комплекс терапевтических мероприятий при остеоартрите включает как немедикаментозные, так и медикаментозные методы. Немедикаментозные методы направлены на коррекцию факторов риска прогрессирования заболевания, уменьшение болевого синдрома, купирование воспалительного процесса и включают мероприятия по снижению массы тела, механическую разгрузку суставов, оптимизацию двигательного режима пациентов, ортопедическую коррекцию, лечебную физкультуру, физиолечение и др. Mпациентов, ортопедическую коррекцию, лечебную физкультуру, физиолечение и др.

В свою очередь, задачами медикаментозной терапии являются купирование воспаления (симптоматический эффект) и замедление структурного прогрессирования заболевания (патогенетический эффект). Симптоматический эффект обеспечивается в основном применением быстродействующих препаратов (нестероидных противовоспалительных средств и анальгетиков), а также медленно действующих лекарственных средств — хондропротекторов (хондроитина, глюкозамина или комбинированных препаратов). Успешно применяется при остеоартрите и локальная терапия (внутрисуставное введение гиалуроновой кислоты, глюкокортикостероидов, хондропротекторов). При неуспешном консервативном лечении на помощь пациенту приходят хирурги со своими методами лечения (артроскопия, артропластика, синовэктомия, эндопротезирование суставов). Активно развиваются новые перспективные методы терапии остеоартрита — трансплантация хряща, стволовых клеток и др.

Эффективность применения хондропротекторов является предметом постоянных дискуссий. Обсуждается выбор препаратов, режим дозирования, выраженность их патогенетического действия (т.е. на природу заболевания, а не на ее симптомы), а также целесообразность назначения в целом.

Во избежание неосуществления надежд, связанных с применением хондропротекторов, при их назначении следует учитывать следующие факты. Хондропротекторы не «выращивают» новый хрящ там, где он потерян. Они лишь предотвращают его дальнейшее повреждение и «истончение». Поэтому при запущенных вариантах остеоартрита не стоит надеяться на уменьшение структурных изменений. Терапия в данном случае будет направлена на сохранение хряща на том уровне, на каком начато лечение.

Пациенты с 3—4 стадией заболевания должны четко представлять, каких эффектов можно добиться (уменьшение боли, расширение двигательной активности), а каких нельзя (появление «нового» хряща или его «прирост»). При этом не надо забывать о продолжительности лечения. Учитывая низкую биодоступность хондропротекторов (от 5 до 45%) их назначают продолжительными курсами. Минимальный составляет 2 месяца, а при выраженной клинической картине остеоартрита целесообразно применение хондропротекторов в течение 4 месяцев непрерывно с последующим перерывом (около 2-х месяцев), после чего курс должен быть повторен.

ВАЖНО! Хондропротекторы не относятся к быстро действующим препаратам. Эффект их развернут во времени и наступает, как правило, к концу первого месяца применения, нарастая по мере продолжения лечения.

Длительное назначение хондропротекторов преследует еще одну важную цель: сократить потребность в противовоспалительной терапии, прежде всего в нестероидных противовоспалительных препаратах, которые негативно воздействуют на желудок, имеют другие побочные эффекты. Учитывая пожилой возраст основной когорты пациентов с остеоартритом и наличие у них «букета»представляется чрезвычайно актуальным сокращение количества и доз применяемых лекарственных средств.

Основными субстанциями препаратов, относящихся к хондропротекторам, являются хондроитини и глюкозамин, представленные как отдельно, так и в комбинации. Вопрос выбора того или иного хондропротектора — это задача врача.

Представляют интерес результаты двойного слепого рандомизированного плацебоконтролируемого исследования, в котором применялись следующие вари-анты терапии: глюкозамин сульфат 1500 мг ежедневно, хондроитин сульфат 800 мг ежедневно, комбинированный препарат (глюкозамин и хондроитин) и плацебо. В исследовании участвовало 605 пациентов в возрасте 45—75 лет с остеоартритом коленных суставов и наличием болевого синдрома. Необходимо отметить, что в ходе исследования пациенты принимали хондропротекторы и плацебо непрерывно в течение двух лет.

Исследование ставило задачу сравнить симптоматический эффект, а также определить наличие и степень выраженности патогенетического действия различных вариантов терапии. Для оценки последнего использовали рентгенологический метод.

Обязательное условие для включения пациента в исследование — ширина суставной щели 2 мм и более, что свидетельствует об относительной сохранности хряща при наличии клинической картины и инструментального подтверждения остеоартрита.

Исследование показало, что у всех пациентов в течение первого года лечения уменьшился болевой синдром (симптоммодифицирующий эффект), при этом существенных различий между группами пациентов, получавших вышеуказанные режимы терапии, отмечено не было.

В отношении патогенетического эффекта наилучший результат был характерен для комбинированных хондропротекторов по сравнению с монотерапией хондроитином, глюкозамином и плацебо. Патогенетический эффект, оцениваемый рентгенологически, заключался в уменьшении темпов редукции суставной щели.

Таким образом, терапия медленно действующими симптоммодифицирующими препаратами (хондропротекторами) показана при остеоартрите для купирования симптомов заболевания, расширения двигательной активности пациентов, снижения потребности в противовоспалительной терапии, а также (при условии длительного и регулярного использования) и для предотвращения прогрессирования заболевания.

Елена Кундер,
доктор медицинских наук,
профессор кафедры кардиологии и ревматологии БелМАПО

Хондропротекторы | Лекарственный справочник | Здоровье

Действующее вещество: Хондроитина сульфат
Артрадол
(лиофилизат для приготовления раствора)
(Инкамфарм)

Мукосат
(раствор) (ГНИИ кровезаменителей и медпрепаратов, Синтез)
Структум (капсулы) (Пьер Фабр)
Хондрогард (раствор) (Сотекс)
Хондроитин-акос (капсулы) (Синтез)
Хондроксид (таблетки)
(Нижфарм)

Хондролон (лиофилизат для приготовления раствора) (Микроген)

700–825

 

141–651

 

921–1469

531–1136

199–404

383,3–654

770–1210,5

Защищает хрящ, подавляя активность ферментов, вызывающих его разрушение. Стимулирует обмен веществ костной и хрящевой ткани, участвует в построении ее основного вещества. Обладает противовоспалительными и обезболивающими свойствами, нормализует выработку суставной жидкости, что ведет к улучшению подвижности суставов, уменьшению интенсивности болей. Помимо остеоартроза и остеохондроза применяется при остеопорозе, пародонтопатиях, переломах костей для ускорения образования костной мозоли. Противопоказан при кровотечениях и склонности к ним, тромбофлебитах, а также детям.
Действующее вещество: Глюкозамин
Глюкозамин максимум
(таблетки)
(Херкель)

Дона
(таблетки, порошок, раствор) (Роттафарм)
Эльбона
(раствор)
(Эллара)

293–485

 

1090–1689

468–1060,5

Стимулирует синтез синовиальной жидкости, восстанавливает ферментативные процессы в клетках суставного хряща. Облегчает отложение кальция в костной ткани, тормозит развитие дегенеративных процессов в суставах, восстанавливает их функцию и уменьшает боли. Применяется при остеоартрозе, плечелопаточном периартрите, остеохондрозе и ряде других заболеваний. Может вызывать боли в верхней половине живота, тошноту, метеоризм, диарею, запор. Эффективность и безопасность препарата у детей не изучалась.
Действующее вещество: Глюкозамин + хондроитина сульфат
Артра (таблетки) (Юнифарм)
Глюкозамин-хондроитин комплекс
(Фармакор)
Кондронова (капсулы)
(Панацея биотек)

Терафлекс
(капсулы) (Байер)
Жабий камень (БАД) (капсулы) (РеалКапс)

415,7–880

188,21–341

 

119,5–435

716,6– 829,2

105–156,25

Стимулятор регенерации хрящевой ткани, обладает положительными свойствами как хондроитина, так и глюкозамина. При наличии воспалительных изменений в суставах облегчает симптомы заболевания и уменьшает потребность в обезболивающих препаратах. Показан при остеоартрозе периферических суставов и позвоночника. Иногда может вызывать легкие нарушения функции желудочно-кишечного тракта: боли в верхней половине живота, метеоризм, диарею, запор. Противопоказан при выраженном нарушении функции почек. При бронхиальной астме, сахарном диабете, кровотечениях или склонности к ним применяют с осторожностью.
Действующее вещество: Глюкозамин + хондроитина сульфат + ибупрофен
Терафлекс Адванс
(капсулы)
(Байер)
354–527,8 Препарат, в котором хондропротекторы глюкозамина сульфат и хондроитина сульфат сочетаются с ибупрофеном – веществом, обладающим противовоспалительным и обезболивающим действием. Применяется при остеоартрозе крупных суставов и остеохондрозе позвоночника, сопровождающихся умеренным болевым синдромом. Длительность приема без консультации врача не должна превышать трех недель. При применении препарата возможны тошнота, боль в животе, метеоризм, диарея, запор. Эти реакции исчезают после отмены препарата. Следует также учитывать возможность развития побочных реакций, связанных с входящим в состав препарата ибупрофеном (см. «Наиболее частые побочные эффекты НПВС»). Противопоказаниями к применению являются язвенная болезнь желудка и двенадцатиперстной кишки в стадии обострения, болезнь Крона, неспецифический язвенный колит; «аспириновая» астма, нарушения свертываемости крови и ряд других заболеваний. При непереносимости морепродуктов вероятность развития аллергических реакций на препарат возрастает. Из-за наличия в составе ибупрофена нельзя сочетать с применением других обезболивающих средств, так как такая комбинация резко повышает риск побочного действия.
Действующее вещество: Неомыляемые соединения масла авокадо + неомыляемые соединения масла бобов сои
Пиаскледин 300 (капсулы)
(Лаборатория
Экспансьянс)
334–724,5 Препарат растительного происхождения, регулирующий обмен в хрящевой и костной ткани. Способствует замедлению разрушительных процессов в хрящевой ткани, способствует ее восстановлению. Обладает симптоматическим противовоспалительным и обезболивающим действием на суставы. Показаниями к применению является остеоартроз I–III стадии различной локализации.

Лечение грыжи позвоночника без операции – Новая больница



Что такое грыжа позвоночника?

Болезни позвоночника с каждым годом бьют новые рекорды статистики. Отдельное место среди них занимают межпозвоночные грыжи. Сидячий образ жизни, гиподинамия, неправильное питание, отсутствие правильного планирования рабочего ритма, подъем тяжестей, хронические заболевания – далеко не полный список факторов, способствующих развитию целого спектра заболеваний позвоночного столба.

Вследствие нарушения обменных процессов в межпозвоночном хряще наступает его дегенерация, обезвоживание, и, как следствие, нарушение плотности. Питание диска должно быть постоянным, так как он состоит на 70% из воды. Диск теряет свои амортизирующие свойства, смещается, Разрушается фиброзное кольцо диска, выходит пульпозное ядро, образуетмя грыжа диска. Грыжа диска может быть безсимптомной. При раздражении болевых рецепторов вызывает боль в месте расположения и при сдавлении нервных корешков , боль может иррадиировать по ходу корешкового нерва.

Наиболее часто это заболевание наблюдается у людей от 25 до 60 лет.


Диагностика заболевания

В зависимости от уровня локализации грыжи, болевые ощущения могут возникать в верхних либо нижних конечностях, сопровождаться онемением, покалыванием, жжением, двигательными нарушениями. В результате нарушением режима сна и работы.

Ранняя диагностика межпозвоночной грыжи способна существенно снизить время дальнейшего лечения. После консультации врача обычно назначается МРТ (магнитно-резонансная томография), или КТ( компьютерная томография) которая позволяет в разрезе увидеть патологию, выявить локализацию и степень поражения.


Методы лечения

К основным методам лечения относят медикаментозную терапию, вытяжение позвоночника ,иглорефлексотерапию , физиотерапию, массаж и кинезотерапию. Важное место в лечении грыж отводится профилактике , которая направлена на то, чтобы не допустить рецидива заболевания.

Начальный этап терапии заключается:

  • в купировании болевого синдрома;
  • снятии воспалительного процесса и отека в тканях;
  • восстановлении двигательной активности;
  • улучшении питания поврежденных тканей.

Почему возникает грыжа?

К основным причинам возникновения грыж относят малоподвижный образ жизни, неправильное перераспределение нагрузки на позвоночник, хронические заболевания опорно-двигательного аппарата.

Медикаментозная терапия, хирургическое вмешательство

В дальнейшем, к общей терапии подключают вытяжение позвоночника, лечебную гимнастику, хондропротекторные препараты. Одним из широко применяемых методов лечения является медикаментозная блокада. Она проводится с помощью эпидурального и параветребрального введения гормонального препарата с анестетиком.

Доказано, что лечебная гимнастика в ранний восстановительный период на 35% ускоряет процессы заживления тканей. Особенно это касается восстановления после оперативного вмешательства. Операция показана в тех случаях, когда нет результата от консервативного лечения, при больших грыжах со стенозом позвоночного канала и выраженном неврологическом дефиците. Современные хирургические методики позволяют быстро и с наименьшими осложнениями удалить грыжи позвоночника.


Реабилитация

Когда острый период заболевания прошел, важно направить силы на поддержание результата. В данном случае также применяется иглорефлексотерапия, которая улучшает общий иммунитет, способствует быстрому восстановлению пациента. Эффективным методом также является физиотерапия в сочетании с массажем или мануальным воздействием.

Главное условие полноценного восстановления – комплексное воздействие на очаг заболевания в сочетании с поддерживающей терапией.


Стоимость Способы оплаты: оплата наличными средствами; оплата пластиковыми банковскими картами МИР, VISA, MastercardWoridwide

хондропротекторные препараты для суставов для собак

Ключевые слова: препарат сустав плюс, где купить хондропротекторные препараты для суставов для собак, лечение суставов здоров.


препарат пчелка для суставов, гонартроз 4 степени коленного сустава лечение, аюрведа лечение суставов, деформирующий остеоартроз коленного сустава 1 степени лечение, базисные средства для лечения ревматоидного артрита

Описание

Боль в коленном суставе мне мешала полноценно ходить, что снижало качество жизни. Я перепробовал большое количество традиционных препаратов, но видимого терапевтического эффекта они не имели. Артрофиш мне посоветовал друг. Я предварительно прочитал информацию о медикаменте и отзывы людей и решил его приобрести. Я прошел курс лечения. На данный момент боль меня вообще не беспокоит. У моей мамы болят колени ну когда она начала принимать артофиш , она не может ходить это почему так .кто не будь скажете это так бывает .она не может стать с спостели .мы звонили они сказали что нужен постельный режим.Ну от этого будет какие то изменения


Официальный сайт хондропротекторные препараты для суставов для собак

Состав

Все хондропротекторы для суставов собак делят на несколько видов. Деление зависит от состава. Они классифицированы по размерам животных – представлены универсальные препараты и средства для собак крупных и мелких пород. Хондропротекторы, которые подходят любым собакам. Хондропротекторы – препараты для защиты и восстановления суставов. Улучшают метаболизм хрящей. В статье я рассказала о хондропротекторах для собак. Привела их классификацию. Описала состав, активные вещества и принцип действия. Хондропротекторы — препараты для собак, улучшающие метаболизм хряща, замедляют или. Это натуральный хондропротектор для собак. Он обеспечивает легкость движения. Известно, что поражение функции сустава, связанное с возрастом, стрессом, травмами, значительно снижает подвижность. Всё о хондропротекторах для щенков — лучшие хондропротекторы для собак, необходимые витамины для суставов. Чтобы у щенка не было слабых лап: какие препараты необходимы для суставов и связок щенка средней и крупной породы. Как любящий владелец своей собаки и человек, вырастивший. Хондропротекторы — залог здоровья и подвижности вашего любимца. Заболевания суставов – это действительно бич всех собак крупных и средних пород. Животные, привыкшие быстро двигаться и жить полноценной жизнью. Хондропротекторы. — это ветеринарные препараты, улучшающие структуру хряща. У собак более пожилого возраста препятствует повреждению хрящей суставов и связок, обеспечивая, таким образом, безболезненную функцию сустава. Гидролизат коллагена является строительным материалом. В обзоре — лучшие хондропротекторы для собак. Они классифицированы по размерам животных – представлены универсальные препараты. Обязательно рекомендуется применять для питомцев хондропротекторы для суставов и костей. Зачем нужно использовать хондропротекторы для собак? Главная страница Здоровье собак Препараты для собак Лучшие хондропротекторы для собак. У животных нередко диагностируются заболевания суставов, и тогда ветеринар может назначить вашему питомцу препараты для восстановления хрящевой ткани. С описанием лучших. Все хондропротекторы для суставов собак делят на несколько видов. Хондропротекторы для собак, это препараты, при помощи которых происходит восстановление тканей хрящевого сустава. Хондропротекторы для лечения суставов: применение, выбор, список препаратов Болезни суставов в современном мире получают все. Для лечения заболеваний суставов и хрящей используются особые препараты – хондропротекторы. По самому названию этой группы веществ (хондро – хрящ, протекция. Хондропротекторы – препараты, обеспечивающие защиту суставов. Хондропротекторы для собак и кошек предназначены для того, чтобы донести до места воспаления тканей необходимые элементы. Препарат для суставов, Витамины для собак, Витамины для кошек, Коллаген, Глюкозамин. Витамины для суставов и костей ArthroBalans Plus Артро Баланс Плюс 150 таблеток. Пчелиный спас хондропротекторный крем для суставов. Отправить сообщение. Препарат Мукосат — это хондропротектор, он является одним из самых часто используемых медикаментов для лечения суставов. Некоторые медики утверждают, что он намного эффективнее, нежели импортный Алфлутоп. Одно из его основных достоинств — это то, что в его состав входят только натуральные. 8 в 1 Глюкозамин забота о суставах для собак, банка 110 таб. Пластиковая банка 55 таблеток Показания к применению: Рекомендуют в качестве профилактического средства растущим щенкам, молодым собакам для укрепления суставов и связок, полноценного развития костяка, сохранения правильного. Хондропротекторы для крупных пород собак и мелких;. Сочетание анальгетика и хондропротектора в одном препарате – отличное решение. Регенерация, стимуляция. Так имеем защитную функцию для суставов, быстрое восстановление костных тканей, быстрый синтез коллагенов.

Результаты испытаний

Специалисты говорят, что разрушенная хрящевая ткань трудно подлежит восстановлению, однако можно уберечь себя от тяжёлых последствий, не запуская стадию. Препарат на основе морских ингредиентов хорошо зарекомендовал себя в качестве профилактического лекарства, идеально подходит для комплексного лечения. Врачи твердят, что деформация хрящей суставов – дело хирургического вмешательства, однако препарат Артрофиш позволит отдалить неприятный момент до глубокой старости. Использовал средство Артрофиш для восстановления после травмы коленного сустава. Применял его в течении трёх недель. Сильно беспокоили боли при ходьбе. После первой недели применения прекратились ноющие боли по ночам, стал спокойно спать. Затем продолжил курс и колено полностью восстановилось. Хирург просто не поверил, что я в такой короткий срок смог вылечится.

Мнение специалиста

О препарате Артрофиш я знаю не понаслышке, так как сам его использовал. Мне нравится то, что медикамент имеет натуральный состав и не вредит здоровью человека. Кроме того, лекарство помогает при разнообразных заболеваниях суставов, поэтому я рекомендую его своим пациентам.

Гонартроз коленного сустава имеет несколько синонимов: остеоартрит, артроз, остеоартроз. Недуг представляет собой невоспалительные изменения костной ткани дегенеративно-дистрофического характера. Содержание. Что такое гонартроз. Причины гонартроза. Классификация гонартроза. По механизму развития. По характеру развития. Степени гонартроза. 1 степень гонартроза. Упражнения Евдокименко. Упражнения Попова. Симптоматика. Диагностика недуга. Главны. Гонартроз — заболевание коленного сустава. Это самый распространенный вид артроза, с его симптомами знакома пятая. Актуально лечение ортопедическими приспособлениями. В лечении гонартроза важно максимально снизить нагрузку на больной сустав или суставы. Для этого используются различные. Что такое гонартроз? Гонартроз – это дегенеративно-дистрофическое заболевание коленного сустава. Авторские и новаторские методики лечения гонартроза. К авторским методам лечения артроза коленного сустава можно отнести: Методику Евдокимова; Методику Бубновского; Методику Гита. Они имеют. Лечение гонартроза коленного сустава без операции. Гонартроз — заболевание коленного сустава. Это самый распространенный вид артроза, с его симптомами знакома пятая часть населения планеты. Гонартроз коленного сустава это хроническое заболевание которое подается лечению. Гонартроз коленного сустава — одно из самых распространенных, диагностируется у каждого десятого человека после 45 лет и у каждого третьего — после 60. Статистические данные приводят цифры в сотни. Лечение гонартроза, широко распространенного сегодня среди пожилых людей заболевания опорно-двигательного аппарата, считается для медиков важной задачей.

Назначение

Для лечения суставов используется гель Артрофиш, который обладает местным эффектом воздействия. Но эта лекарственная форма недостаточно эффективна, поэтому рекомендуется одновременно принимать капсулы, что обеспечит комплексное воздействие на суставы. Лекарство Артрофиш производится на основе хрящевой ткани морских рыб. Это полезные вещества, с помощью которых обеспечивается полноценное питание хрящевой ткани. Для их переработки используется патентованный метод ферментативного гидролиза, что обеспечивает полноценное сохранение всех уникальных компонентов хряща.

Как заказать?

Заполните форму для консультации и заказа хондропротекторные препараты для суставов для собак. Оператор уточнит у вас все детали и мы отправим ваш заказ. Через 1-10 дней вы получите посылку и оплатите её при получении.

хондропротекторные препараты для суставов для собак. артроз коленного сустава 1 степени лечение препараты. Отзывы, инструкция по применению, состав и свойства.

Как действуют нестероидные противовоспалительные средства? Нестероидные противовоспалительные препараты применяются для лечения суставов крупных и мелких, а также связок. Сопровождают заболевания отеки, боли и гипертермия. При этом в организме формируются простагландины – вещества. Самостоятельно приобретать наугад нестероидные противовоспалительные средства для суставов не рекомендуется. Более того, после того как таблетки или пилюли для лечения суставов и прочих заболеваний были выпиты в течение получаса нельзя ложиться в постель. Так как вертикальное. Список нестероидных противовоспалительных препаратов для лечения суставов и их аналогов. 4675. 0. Автор статьи: Сытников Дмитрий. Врач ортопед-травматолог первой категории, хирург. Нестероидные противовоспалительные препараты для лечения суставов ног. Все нестероидные препараты можно разделить на 2 группы, принимая во внимание их противовоспалительную активность и химическую структуру. Первую группу составляют самые сильные обезболивающие препараты. Список нестероидных противовоспалительных препаратов для лечения суставов. Нестероидные противовоспалительные препараты – это отдельная группа. Заболевание ног, выражающееся в их отечности, из-за нарушения вывода мочевой кислоты из организма. Полиартрит. Болезнь нескольких. Нестероидные противовоспалительные средства (НПВС) – медикаменты, в составе которых отсутствуют стероиды. Нестероидные противовоспалительные препараты нового поколения для лечения суставов оказывают более выборочное воздействие и тщательнее подавляют воспаление. Главной их. Лечение суставов нестероидными противовоспалительными средствами — процесс длительный. Нестероидные противовоспалительные препараты являются основой медикаментозного лечения при большинстве заболеваний опорно-двигательного аппарата. Они позволяют достаточно быстро. Нестероидные противовоспалительные препараты для лечения суставов, показания к применению. Нестероидные препараты – являются обязательными средствами для избавления от заболеваний опорно-двигательной системы. Каждая фармакологическая форма выпуска (таблетки, инъекции, гели.


Официальный сайт хондропротекторные препараты для суставов для собак

✅ Купить-хондропротекторные препараты для суставов для собак можно в таких странах как:


Россия, Беларусь, Казахстан, Киргизия, Молдова, Узбекистан, Украина Армения


У моей мамы болят колени ну когда она начала принимать артофиш , она не может ходить это почему так .кто не будь скажете это так бывает .она не может стать с спостели .мы звонили они сказали что нужен постельный режим.Ну от этого будет какие то изменения Как действуют нестероидные противовоспалительные средства? Нестероидные противовоспалительные препараты применяются для лечения суставов крупных и мелких, а также связок. Сопровождают заболевания отеки, боли и гипертермия. При этом в организме формируются простагландины – вещества. Самостоятельно приобретать наугад нестероидные противовоспалительные средства для суставов не рекомендуется. Более того, после того как таблетки или пилюли для лечения суставов и прочих заболеваний были выпиты в течение получаса нельзя ложиться в постель. Так как вертикальное. Список нестероидных противовоспалительных препаратов для лечения суставов и их аналогов. 4675. 0. Автор статьи: Сытников Дмитрий. Врач ортопед-травматолог первой категории, хирург. Нестероидные противовоспалительные препараты для лечения суставов ног. Все нестероидные препараты можно разделить на 2 группы, принимая во внимание их противовоспалительную активность и химическую структуру. Первую группу составляют самые сильные обезболивающие препараты. Список нестероидных противовоспалительных препаратов для лечения суставов. Нестероидные противовоспалительные препараты – это отдельная группа. Заболевание ног, выражающееся в их отечности, из-за нарушения вывода мочевой кислоты из организма. Полиартрит. Болезнь нескольких. Нестероидные противовоспалительные средства (НПВС) – медикаменты, в составе которых отсутствуют стероиды. Нестероидные противовоспалительные препараты нового поколения для лечения суставов оказывают более выборочное воздействие и тщательнее подавляют воспаление. Главной их. Лечение суставов нестероидными противовоспалительными средствами — процесс длительный. Нестероидные противовоспалительные препараты являются основой медикаментозного лечения при большинстве заболеваний опорно-двигательного аппарата. Они позволяют достаточно быстро. Нестероидные противовоспалительные препараты для лечения суставов, показания к применению. Нестероидные препараты – являются обязательными средствами для избавления от заболеваний опорно-двигательной системы. Каждая фармакологическая форма выпуска (таблетки, инъекции, гели. Специалисты говорят, что разрушенная хрящевая ткань трудно подлежит восстановлению, однако можно уберечь себя от тяжёлых последствий, не запуская стадию. Препарат на основе морских ингредиентов хорошо зарекомендовал себя в качестве профилактического лекарства, идеально подходит для комплексного лечения. Врачи твердят, что деформация хрящей суставов – дело хирургического вмешательства, однако препарат Артрофиш позволит отдалить неприятный момент до глубокой старости.

Боль в коленном суставе мне мешала полноценно ходить, что снижало качество жизни. Я перепробовал большое количество традиционных препаратов, но видимого терапевтического эффекта они не имели. Артрофиш мне посоветовал друг. Я предварительно прочитал информацию о медикаменте и отзывы людей и решил его приобрести. Я прошел курс лечения. На данный момент боль меня вообще не беспокоит.

Артрофиш предназначается для эффективного лечения суставов, снятия воспаления и устранения болевого синдрома. Биоактивный комплекс способствует восстановлению повреждённых суставов, повышает эластичность и подвижность. Лекарство получило довольно неплохие отзывы у покупателей, но каково мнение докторов? Действительно ли препарат способен вернуть здоровье и подарить жизнь без дискомфорта?

Производитель при изготовлении лекарства исключает применение гормонов и вредных синтетических веществ, что снижает количество противопоказаний. Медикамент не рекомендуется использовать при индивидуальной непереносимости действующих веществ. Представительницам слабого пола во время беременности рекомендуется отказаться от использования лекарства. От приема Артрофиша рекомендуется отказаться при грудном вскармливании, так как действующие компоненты способны проникать в грудное молоко.

Хондропротекторы при дегенеративных заболеваниях суставов | Ревматология

Аннотация

Катаболические пути цитокинов и анаболических факторов роста контролируют разрушение и восстановление при остеоартрите (ОА). Однонаправленный каскад цитокинов, управляемый TNF-α / IL-1, нарушает гомеостаз внеклеточного матрикса суставного хряща при ОА. Хотя хондроциты в хряще OA сверхэкспрессируют анаболический инсулиноподобный фактор роста (IGF) и его специфический рецептор (IGFRI), аутокринный TNF-α, высвобождаемый апоптозными клетками суставного хряща, запускает каскад, управляемый ауто / паракринным IL-1, который перекрывает активность фактора роста которые поддерживают восстановление при дегенеративных заболеваниях суставов.Хондропротекция с повторным появлением исчезнувшей суставной щели была безошибочно задокументирована в периферических суставах пациентов, страдающих спондилоартропатией, при лечении агентами, блокирующими TNF-α, которые подавляли однонаправленный цитокиновый каскад, управляемый TNF-α / IL-1. Серия агентов, модифицирующих структуру соединительной ткани (CTSMA), которые непосредственно влияют на синтез ИЛ-1 и высвобождают in vitro и снижают модулирующие характеристики нижерасположенного ИЛ-1, например активности коллагеназы, протеогликаназы и матриксной металлопротеиназы, экспрессия индуцибельной синтазы оксида азота, повышенное высвобождение оксида азота и секреция простагландина E 2 , IL-6 и IL-8, как было показано, обладают модифицирующим заболевание OA активность лекарственного средства (DMOAD) в экспериментальных моделях ОА и у людей с ОА суставов пальцев и коленей.Примерами являются кортикостероиды, некоторые сульфатированные полисахариды, химически модифицированные тетрациклины, диацетилреин / реин, глюкозамин и неомыляемые вещества авокадо / сои.

Утрата функции является следствием анатомических изменений тканей суставов при остеоартрозе (ОА). Вмешательство в анатомическое развитие ОА, по-видимому, является методом сохранения нормальной функции суставов. Вещества, которые защищают суставной хрящ во время ОА, получили название хондрозащитных средств.Когда кажется, что они изменяют течение заболевания, эти агенты могут быть названы лекарствами, модифицирующими течение болезни, (DMOAD) [1]. Боль в суставах при остеоартрите объясняется различными причинами, вторичными по отношению к анатомическим изменениям, например: воспалительные явления в синовиальной оболочке и субхондральная внутрикостная гипертензия из-за венозного застоя. В этом обзоре будут рассмотрены аспекты хондропротекторной терапии DMOAD, а не облегчение клинических симптомов, которые в конечном итоге могут возникнуть при назначении пациентам терапии DMOAD.

Гомеостаз внеклеточного матрикса здорового суставного хряща

Гомеостаз внеклеточного матрикса (ЕСМ) суставного хряща зависит от реакции клеток суставного хряща на ауто- и паракринные анаболические и катаболические пути. Наиболее важные факторы роста и цитокины, которые, как известно, участвуют в метаболизме хрящей, вырабатываются самими хондроцитами [2, 3]. Синтез и накопление ЕСМ регулируется местно продуцируемыми факторами роста, такими как инсулиноподобные факторы роста (IGF) и трансформирующий фактор роста-β (TGF-β).Специфическая регуляторная роль TGF-β была предложена при патологических условиях [4], и большое количество экспериментальных данных подтвердило важность IGF-1 как промотора роста и синтеза матрикса хондроцитами в здоровом суставном хряще. IGF-1 усиливает синтез аггрекана клетками или эксплантами суставного хряща [5-10] и in vivo и на животных моделях [11]. Оборот и деградация матрикса зависят от реакции клетки суставного хряща на катаболические цитокины, из которых IL-1α и β являются основными агонистами [12, 13].Было показано, что помимо своей способности вызывать деградацию суставного хряща, IL-1 подавляет синтез аггрекана и коллагена хондроцитами [14, 15]. Это снижение продукции соединений ЕСМ частично опосредовано ИЛ-1-индуцированным образованием оксида азота (NO) [16]. Эффекты IL-1 опосредуются высокоаффинным рецептором клеточной поверхности (IL-1RI) [17, 18]. Важными контролирующими факторами активности IL-1 являются белки, относящиеся к семейству рецепторов IL-1, среди которых рецептор-ловушка IL-1 типа 2 (IL-1RII) экспрессируется на плазматической мембране хондроцитов и связывает IL-1α и β, но не не передавать сигналы ИЛ-1 [19, 20].Интересно, что IGF, как было показано, активирует рецептор-ловушку IL-1 IL-1RII, тем самым обращая активность IL-1 [21]. Это открытие согласуется с наблюдением, что IGF-1 непосредственно снижает как базальную, так и стимулируемую цитокинами деградацию [22] и депрессию основного вещества суставного хряща [21]. Таким образом, повышая регуляцию IL-1RII, IGF-1 защищает ECM хряща от индуцированного IL-1 разрушения (рис. 1A).

Рис. 1.

Пути IL-1 / IGF, контролирующие обмен внеклеточного матрикса (ECM) в (A) здоровом хряще, (B) OA хряще и (C) OA хряще, когда проводится репрессивная терапия IL-1.(A) Активность IL-1 контролируется IGF-1 в нормальном хряще. Через повышающую регуляцию IL-1RII IGF-1 защищает ECM хряща от индуцированного IL-1 разрушения. (B) Считается, что при ОА TNF-α, высвобождаемый апоптозными клетками суставного хряща, вызывает выделение IL-1RII и запускает каскад, управляемый ауто / паракринным IL-1, что приводит к резорбции ECM. По неизвестным причинам хондроциты в хряще OA сверхэкспрессируют анаболическую активность фактора роста IGF-1 / IGF-RI. (C) Подавление активности IL-1 в хрящевых клетках, которые сверхэкспрессируют IGF-1, приводит к восстановлению ECM.

Рис. 1.

Пути IL-1 / IGF, контролирующие обмен внеклеточного матрикса (ECM) в (A) здоровом хряще, (B) хряще OA и (C) хряще OA, когда проводится репрессивная терапия IL-1. (A) Активность IL-1 контролируется IGF-1 в нормальном хряще. Через повышающую регуляцию IL-1RII IGF-1 защищает ECM хряща от индуцированного IL-1 разрушения. (B) Считается, что при ОА TNF-α, высвобождаемый апоптозными клетками суставного хряща, вызывает выделение IL-1RII и запускает каскад, управляемый ауто / паракринным IL-1, что приводит к резорбции ECM.По неизвестным причинам хондроциты в хряще OA сверхэкспрессируют анаболическую активность фактора роста IGF-1 / IGF-RI. (C) Подавление активности IL-1 в хрящевых клетках, которые сверхэкспрессируют IGF-1, приводит к восстановлению ECM.

Патология метаболических путей цитокинов и факторов роста, принимаемых ОА

Сообщалось о повышении регуляции как катаболических [2, 3, 23, 24], так и анаболических [2, 3, 23–26] путей в хондроцитах и ​​хрящах при ОА. Корреляция с возникновением и степенью патологии ОА была отмечена для ИЛ-1β [2, 3, 27], и эти повышенные уровни катаболических цитокинов воплощены в хорошо документированном увеличении активности металлопротеиназ, которые были выше в хряще ОА по сравнению с морфологически нормальными. хрящ из того же сустава [27–30].Кроме того, в хондроцитах ОА было обнаружено увеличение плотности рецепторов IL-1RI по сравнению с нормальными хондроцитами. Уровни мРНК и белка IGF-1 и его рецептора IGFRI были значительно выше в фибриллированном хряще OA, чем в нефибриллированном хряще OA тазобедренного и коленного суставов [23, 26]. Самые сильные сигналы сообщения IGF-1 или уровни белка наблюдались в хондроцитах более продвинутых поражений [23, 26]. Когда сравнивали клетки, полученные из нормальной ткани и ткани ОА из одних и тех же коленных суставов человека, ассоциированный с клетками аггрекан и коллаген типа II были значительно уменьшены вокруг хондроцитов, полученных из патологической ткани.Одновременно хондроциты из фибриллированного хряща OA экспрессировали значительно более высокие внутриклеточные уровни IL-1α и β и повышали уровень IL-1RI, связанный с плазматической мембраной. В то же время наблюдались значительно более высокие уровни внутриклеточного IGF-1 и IGF-R1, связанного с плазматической мембраной. Неожиданно оказалось, что в присутствии этой повышенной активности IGF экспрессия связанного с плазматической мембраной рецептора-ловушки IL-1RII была снижена в хондроцитах OA [26]. Снижение уровней рецептора-ловушки IL-1RII плазматической мембраны на хондроцитах ОА может быть связано с вмешательством других аутокринных цитокиновых путей.В этом контексте было показано, что TNF-α вызывает быстрое выделение IL-1RII из мембран миеломоноцитарных клеток [31, 32]. Подобный эффект TNF-α на клетки суставного хряща еще предстоит продемонстрировать. Однако присутствие TNF-α в хрящах, подвергшихся механическому повреждению, неоднократно подтверждалось примерами. Травма суставных хондроцитов вызывает апоптоз [33, 34], а апоптоз опосредуется аутокринным путем TNF [35, 36]. Повышенная активность TGF-β в хряще OA [37–39], вызывающая понижающую модуляцию передачи сигналов IL-1RI [40], может частично компенсировать потери IL-1RII, вызванные ауто / паракринной активностью TNF-α.Однако если необходимо идентифицировать метаболические пути цитокинов и факторов роста, TNF-α и IL-1β и их сигнальные рецепторы являются основными кандидатами (рис. 1B).

Агенты, модифицирующие структуру соединительной ткани (CTSMA), и лекарственные средства от остеоартрита, модифицирующие заболевание (DMOAD)

Первые попытки улучшить структуру и функцию соединительной ткани синовиальных суставов, тем самым облегчить симптомы дегенеративных заболеваний суставов, были основаны на расплывчатых предположениях о том, что обильное введение предшественников компонентов внеклеточного матрикса поможет клеткам суставного хряща восполнить утраченную среду. .Это предположение побудило врачей использовать такие вещества, как глюкозамин и сульфат или гликозаминогликаны, с целью улучшения восстановления хряща при дегенеративных заболеваниях суставов. Аналогичным образом, первое внутрисуставное введение полисульфата хондроитина было основано на предположении, что этот препарат гепариноидного типа заменит гиалуронан в качестве лубриканта и снизит уровень фибриногена в воспаленных суставах, и что это даст терапевтическое преимущество [41, 42]. Неожиданно некоторые пациенты сообщили об облегчении симптомов после прохождения этой процедуры, и даже сообщалось о некоторых изменениях в химическом составе синовиальной жидкости [43].

Наряду с глубоким поиском механизмов, посредством которых ткани суставов разрушаются в ходе воспалительных или дегенеративных заболеваний суставов, исследователи более методично искали биологические агенты, способные восстанавливать поврежденные соединительные ткани. Поскольку суставной хрящ является одной из основных тканей-мишеней, поражаемых в ходе ревматических заболеваний суставов, многие исследования были сосредоточены на метаболических характеристиках единственной клетки, находящейся в этой ткани: хондроцита. Вещества, защищающие суставной хрящ при деструктивных заболеваниях суставов, получили название хондрозащитных средств.Когда это произошло in vivo в суставах с остеоартритом, эти агенты были названы лекарствами от остеоартрита, модифицирующими заболевание (DMOAD) [1].

Поскольку ауто / паракринный фактор роста и каскады цитокинов, лежащие в основе развития, гомеостаза и разрушения внеклеточного матрикса суставного хряща, ранее не были известны, первые исследования биологических агентов, способных изменять структуру соединительной ткани в положительную сторону, в основном были сосредоточены на от способности этих агентов улучшать синтез или ухудшать разложение соединений ЕСМ, e.грамм. аггрекан и коллаген. Согласно этому определению, ряд веществ можно классифицировать как вещества, модифицирующие структуру соединительной ткани (CTSMA). Среди них неоднократно упоминались сульфатированные гликозаминогликаны и глюкозамин, химически модифицированные тетрациклины, такие как доксициклин и миноциклин, диацетилреин и его активный метаболит реин, а также неомыляемые вещества авокадо / сои.

Сульфатные полисахариды и хондрозащита

Среди первых веществ, способных улучшать накопление соединений ЕСМ, были так называемые хондромукопротеины [44–46], смесь продуктов деградации протеогликанов, в которых присутствовал хондроитинсульфат.Затем была выдвинута гипотеза, что продукты распада ВКМ, содержащие хондроитинсульфат, каким-то образом оказывают положительную обратную связь на хондроциты суставного хряща. Возможность вмешательства сульфатированных полисахаридов в процессы восстановления клеток соединительной ткани in vitro была впервые описана в середине 1970-х годов [47, 48]. Позже было показано, что полисульфат хондроитинсульфата улучшает синтез гиалуронана в синовиальных суставах in vivo у людей [49]. Тот же препарат, а также его природный аналог, хондроитинсульфат, улучшали функцию репарации хондроцитов in vivo в различных экспериментальных моделях остеоартрита [50–53].Недавно рандомизированные двойные слепые плацебо-контролируемые терапевтические испытания привели к выводу, что эти CTSMA обладают свойствами DMOAD, поскольку они, как было показано, замедляют прогрессирование эрозивного ОА в межфаланговых суставах пальцев [54, 55] и ОА коленного сустава. у человека [56–58].

In vitro и in vivo эксперименты в различных исследовательских центрах, посвященные влиянию на метаболизм молекул межклеточного матрикса (протеогликаны, аггреканы, гиалуронан), показали, что большинство (поли) сульфатированных полисахаридов влияют на клетки соединительной ткани (хрящевые клетки, синовиальные клетки, фибробласты) аналогичным образом [48, 59–61].С улучшением нашего понимания ауто / паракринного фактора роста и цитокиновых путей, которые контролируют гомеостаз здоровых соединительных тканей, стало возможным изучить механизм действия этих CTSMA. Недавние исследования сульфатированных полисахаридов показали, что эти агенты действуют в биологических системах, подавляя важные катаболические ауто / паракринные цитокиновые пути, такие как IL-1, тем самым улучшая накопление соединений ECM в клеточно-ассоциированном матриксе этих клеток.Эксперименты с бычьими хрящевыми клетками, полученными из макроскопически интактных пястно-фаланговых суставов, показали, что физиологические концентрации полисульфата хондроитина значительно снижают нижестоящие эффекты IL-1, такие как активность коллагеназы, протеогликаназы и матриксной металлопротеиназы (MMP) -1 и MMP-3 [62]. Кроме того, полисульфат хондроитина ингибировал индуцированную IL-1 экспрессию мРНК тканевого активатора плазминогена (tPA) [62]. Аналогичным образом, полисульфат ксилозана и полисульфат хондроитина восстанавливали накопление аггрекана, гиалуронана и коллагена типа II в клеточно-ассоциированном матриксе в обработанных IL-1β хондроцитах человека, культивируемых в агарозе.Этот эффект, вероятно, является частично результатом подавления MMPs [63]. Кроме того, в культивируемых хондроцитах лошадей полисульфат хондроитина значительно снижал экспрессию индуцибельной синтазы оксида азота (iNOS), усиленную IL-1β, что сопровождалось повышенным высвобождением NO. Хондроитинполисульфат снижает концентрацию нитрита в супернатантах этих IL-1β-стимулированных культур [64]. Наконец, новый полисульфатированный полисахарид, полисульфат циклодекстрина, продемонстрировал эффекты модификации структуры хряща in vitro , поскольку он улучшал синтез аггрекана и накопление связанных с клетками макромолекул матрикса клетками суставного хряща человека в альгинате.Здесь впервые было показано, что этот эффект частично является результатом прямой репрессии IL-1, поскольку клетки, обработанные полисульфатом циклодекстрина, экспрессируют значительно меньшие количества внутриклеточных IL-1α и β [65]. Те же обработанные β-циклодекстрином хондроциты высвобождали значительно меньше ИЛ-6 в супернатантную культуральную среду, эффект, который, как известно, является результатом ауто / паракринной стимуляции ИЛ-1 [65]. Следует напомнить, что концентрации полисахаридов в супернатантах культур в большинстве описанных экспериментов in vitro и уровни полисахаридов в плазме или хрящевой ткани, полученные у людей после перорального введения, были одного порядка [66–68].

Неомыляемые вещества из авокадо / сои

Сообщалось, что неомыляемые вещества авокадо / сои подавляют катаболическую активность хондроцитов и увеличивают накопление протеогликана хондроцитами ОА в культуре. Неомыляемые вещества из авокадо / сои были мощными ингибиторами основной продукции ММР-3 хондроцитами ОА и продукции IL-6, IL-8, NO и простагландина E 2 (PGE 2 ) [69]. Все эти биологические активности зависят от ИЛ-1 и выражены в хондроцитах ОА.Точно так же неомыляемые вещества из авокадо / сои обращали вспять эффекты IL-1β в фибробластах десен из воспаленных тканей [70]. Эффекты этих экстрактов, подавляющие IL-1, защищали подкожно имплантированный хрящ от деградации [71]. In vivo Эффекты DMOAD после введения неомыляемых веществ из авокадо / сои были описаны в модели менискэктомии у овец [72] и, возможно, в человеческом OA бедра [73].

Химически модифицированные тетрациклины

Было показано, что химически модифицированные тетрациклины, такие как доксициклин и миноциклин, непосредственно ингибируют активность протеаз и коллагеназ [74].Тетрациклины также могут косвенно подавлять эту катаболическую активность, поскольку, как сообщалось, они снижают уровни мРНК коллагеназ в изолированных хондроцитах ОА. Кроме того, доксициклин ингибировал увеличение мРНК этих ферментов в нормальных хондроцитах, стимулированных TNF-α [75]. Аналогичным образом, хондроциты, выделенные из хряща OA человека и обработанные доксициклином, показали значительное ингибирование белка матриксной металлопротеиназы и соответствующих уровней мРНК, что указывает на транскрипционный / посттранскрипционный уровень контроля.Кроме того, лечение доксициклином привело к значительному снижению уровня мРНК IL-1α, β и IL-6 [76].

Прямое ингибирование таких цитокинов могло быть ответственным за снижение активности синтазы оксида азота в синовиальных клетках ОА [77]. Тетрациклины обращали как спонтанную, так и индуцированную IL-1β активность NOS в ex vivo условиях в тканях OA человека. Было обнаружено, что механизм действия этих препаратов на экспрессию NOS, по крайней мере частично, находится на уровне экспрессии РНК и трансляции фермента [78].

Вероятно, что снижение активности коллагеназы и желатиназы в экстрактах хрящей остеоартрита человека после перорального введения этих тетрациклинов человеку [79], а также открытие, что доксициклин ингибирует продукцию NO в хряще у собак, у которых развился ОА после спонтанного разрыв передней крестообразной связки [80], возможно, был приписан ингибированию активности ауто / паракринных катаболических цитокинов. Скорее всего, это ингибирование каскадов катаболических цитокинов было ответственно за «хондропротекторные» эффекты при воспалительных артритах на животных моделях.Профилактические доксициклины и химически модифицированные варианты, вводимые перорально, снижали изменения ОА в коленных суставах in vivo у морских свинок Хартли, которые имеют высокую частоту ОА коленных суставов [81], и заметно снижали тяжесть ОА в областях, несущих нагрузку. медиального мыщелка бедренной кости при экспериментальном ОА у взрослых беспородных собак [82]. Совсем недавно было показано, что лечение доксициклином в дозе 100 мг два раза в день в течение 30 месяцев снижает скорость сужения суставной щели в коленях с установленным остеоартритом в группе женщин с ожирением [83].

диацетилреин

В отличие от других CTSMA, которые ингибируют NO [64, 69, 77, 78, 107, 110–113] и продукцию простаноидов [69, 108, 110–112, 114], активный метаболит диацетилреина, реин не снижает, но, по-видимому, стимулирует синтез простагландинов in vitro [84, 85] и in vivo [86]. Этот механизм действия диацетилреина по увеличению экспрессии циклооксигеназы (COX) -2 и продукции PGE 2 , независимо от их ингибирования эндогенного NO [85, 87], аналогичен таковому у тетрациклинов, например.грамм. доксициклин и миноциклин, которые ингибируют индуцибельную NO-синтазу и увеличивают экспрессию ЦОГ-2 [88, 89]. Rhein и тетрациклины являются родственными химическими структурами в том смысле, что эти соединения возникают в результате реакций замещения полиядерных углеводородов: антрацена и нафтацена соответственно. Реин и тетрациклины обладают структурным сходством (рис. 2).

Рис. 2.

Райн, активный метаболит диацетилреина, и тетрациклин обладают структурным сходством.

Рис. 2.

Райн, активный метаболит диацетилреина, и тетрациклин обладают структурным сходством.

Подобно тетрациклинам, диацетилреин / реин подавлял экспрессию ИЛ-1 в активированных липополисахаридами хондроцитах ОА человека [90] и синовиальных клетках [91]. Эксперименты на изолированных хондроцитах суставного хряща и на эксплантатах хрящевой ткани показали, что это нарушение высвобождения активного ИЛ-1 частично связано с ингибированием фермента, преобразующего ИЛ-1 (ICE) плазматической мембраны.Судя по отсутствию влияния на уровень экспрессии генов обоих белков, действие диацетилреина / реина на IL-1β и ICE должно было быть посттрансляционным [92]. Понижающая модуляция активной продукции IL-1 сопровождалась ингибированием активации NFκB [93] и, следовательно, экспрессии IL-1 / NFκB-зависимых генов в этих клетках [90, 91, 93]. Блокирующие нижестоящие события IL-1 включали снижение продукции NO, стромелизина-1 [91, 94] и коллагеназы, а также провоспалительных IL-6, -8 и -18 в IL-1α и TNF-α активированных монослойных культивируемых суставных хондроцитах человека из ОА суставов [92, 94].Аналогичным образом, реин подавлял индуцированную IL-1 экспрессию генов proMMP-1, -3, -9 и -13 и их активности, а также повышал продукцию тканевого ингибитора металлопротеиназы 1 (TIMP-1) в монослое культивированных суставные хондроциты кролика. Следовательно, в этих клетках сообщалось об увеличении выработки гликозаминогликанов и коллагена наряду со снижением деградации протеогликана [95–97]. Это улучшенное наращивание матрикса могло быть усилено увеличением экспрессии изоформ TGF-β в хондроцитах, обработанных диацетилреином [98].Все эти результатов in vitro были получены с концентрациями диацетилреина / реина, сравнимыми с терапевтическими уровнями в плазме. Можно разумно предположить, что блокирование ИЛ-1 диацетилреином / реином было ответственно за некоторые эффекты DMOAD, наблюдаемые при экспериментальном ОА у животных, например при ушибе индуцированного разрушения хряща надколенника кролика [99] и при спонтанно развивающемся полиартрите у мышей NZB / KN [100]. Хотя это не согласуется с улучшением биохимии суставного хряща [101–103], сравнимая хондрозащита наблюдалась в различных моделях ОА собак, если судить по макроскопическим повреждениям хряща [102, 103].

Эти эффекты DMOAD были подтверждены в двух рандомизированных двойных слепых плацебо-контролируемых исследованиях. Двести шестьдесят девять пациентов с первичным ОА бедра завершили трехлетнее исследование, получая диацетилреин в дозе 50 мг два раза в день или плацебо. Процент пациентов с рентгенологическим прогрессированием, определяемым как потеря суставной щели не менее 0,5 мм, был значительно ниже у пациентов, получавших диацетилреин, чем у пациентов, получавших плацебо. У этих пациентов частота сужения суставной щели была дискретной, но значительно ниже, чем в группе плацебо [104].Эти результаты были подтверждены в другом 1-летнем проспективном рандомизированном двойном слепом плацебо-контролируемом исследовании 301 пациента с радиологическим медиальным ОА коленного сустава [105].

Глюкозамин

Место глюкозамина как CTSMA или DMOAD остается спорным. Тот факт, что этот аминосахар долгое время назывался «сульфатом глюкозамина», вызвал путаницу. Препарат, использованный в ряде экспериментов in vitro и in vivo , не был сложным эфиром сульфата глюкозамина, а оказался препаратом, в котором глюкозамин и сульфат присутствовали в виде двух отдельных молекул в кристаллической форме.Если какие-либо эффекты CTSMA приписываются «сульфату глюкозамина», в настоящее время считается, что активным ингредиентом является моносахарид. В серии экспериментов с изолированными IL-1β-активированными хондроцитами в культуре, где использовались гексозамины, сообщалось о влиянии на последующие события IL-1. Добавление глюкозамина к хондроцитам крысы, обработанным IL-1β, уменьшало активацию фактора транскрипции NFκB, но не белка-активатора-1 [106]. Глюкозамин, но не N, -ацетилглюкозамин или другие моносахариды [107], значительно ингибировал активность NFκB в хондроцитах ОА человека, а также ядерную транслокацию белков p50 и p65 [108].Глюкозамин снижал активность фосфолипазы A2 [109], уровни мРНК и белка ЦОГ-2 [107, 108, 110] и высвобождение PGE 2 [108, 110–114] в клетках суставного хряща различного происхождения. Сходным образом аминосахар снижает продукцию iNOS и NO хондроцитами [107, 110–113] и индуцирует IL-1 металлопротеиназную и коллагеназную активности в супернатантах культур хондроцитов [109–113, 115]. Заметное ингибирование аггреканазозависимого расщепления аггрекана наблюдалось как с клетками крысы, так и с эксплантами крупного рогатого скота при добавлении глюкозамина [116] и маннозамина [117].Ингибирование не было связано с вмешательством в передачу сигналов IL-1, и точный механизм, с помощью которого гексозамины функционируют в этой системе, неясен. Вмешательство в активность ферментов привело к снижению катаболизма ВКМ в этих культурах хондроцитов [113]. Кроме того, сообщалось, что гексозамины улучшают синтез макромолекул ECM в IL-1-репрессированных хрящевых клетках [106, 111, 112, 115]. Большинство цитируемых экспериментов проводилось на нормальных хондроцитах, хондроцитах или хрящевых эксплантатах, примированных IL-1.Редко использовались нативные хондроциты ОА [109, 115]. Основная проблема с исследованиями in vitro , проведенными до сих пор, — это концентрации гексозаминов, используемых в этих экспериментах. Обычно пациентам с ОА ежедневно вводят 1500 мг глюкозамина (20 мг / кг у субъекта массой 75 кг). Эти предписанные количества в лучшем случае обеспечивают концентрацию гексозамина в плазме 0,15–0,30 мМ у среднестатистического европейца. Два из вышеупомянутых экспериментальных исследований были проведены с концентрациями глюкозамина в этом диапазоне [115, 117].Остальные были сделаны с использованием нефизиологических уровней глюкозамина в питательной среде в диапазоне от 0,56 до 139,66 мМ [106–113, 116], условий, в которых ингибирование катаболических эффектов, вызванных IL1β, могло быть связано с токсичностью глюкозамина [118].

Актуальность результатов in vitro , полученных с супрафизиологическими дозами глюкозамина, остается спорным, поскольку ежедневное введение ~ 20 мг / кг глюкозамина пероральным путем кроликам, у которых выполнялось перерезание передней крестообразной связки, имело только обнаруживаемый участок. -специфический, частичный модифицирующий болезнь эффект в этой модели ОА.Введение глюкозамина не предотвращало фибрилляцию и / или эрозию суставного хряща у обработанных животных [119]. Кроме того, парентеральное введение 200 мг / кг N-ацетил-глюкозамина на кроличьей модели экспериментального ОА коленного сустава не показало хондропротекторных эффектов [120]. Механизм действия, с помощью которого этот гексозамин, таким образом, мог повлиять на эволюцию одной человеческой популяции с ОА коленного сустава [121, 122], таким образом, еще предстоит выяснить. Принимая во внимание отсутствие хондрозащиты в экспериментальных животных моделях ОА, подтверждение хондропротекторных эффектов глюкозамина в человеческой популяции было бы ценным.

Кортикостероиды и ИЛ-1

Гомеостаз ВКМ клетками суставного хряща зависит от контроля ауто / паракринных катаболических каскадов, индуцированных ИЛ-1 [21]. Множество эндокринных гормонов и факторов роста способны контролировать эту активность IL-1. Классически сообщалось, что кортикостероиды напрямую влияют на синтез ИЛ-1 [123, 124]. Как показано на культурах хрящевых эксплантатов, кортикостероидные гормоны в физиологических дозах ингибируют деградацию внеклеточного матрикса [125–127].Это ингибирование пути IL-1 привело к снижению патологической активности нейтральных протеаз в хрящевой ткани [128–132]. Помимо того факта, что кортикостероиды действуют синергетически с различными основными факторами роста и дифференцировки, влияя на синтез основного вещества внеклеточного матрикса [133–135], антикатаболические эффекты кортикостероидов, по крайней мере, частично объясняют защитные эффекты на хрящ ОА однократного или периодического действия. местное или системное введение физиологических доз кортикостероидов в различных моделях экспериментально индуцированного ОА, таких как модель менискэктомированного кролика [136, 137], при химически индуцированном повреждении хряща у морской свинки [138] и в модели собаки Паунда-Нуки. ОА [132, 139].Подобные защитные эффекты этих препаратов наблюдались на хрящах остеоартрита у людей [131]. Это подавление IL-1 физиологическими дозами кортикостероидов вместе с повышающей регуляцией рецептора IGF-1 в конечном итоге привело к накоплению соединений ECM в непосредственном окружении хрящевых клеток in vitro [63, 140] .

Защита и регенерация суставного хряща с помощью блокаторов цитокинов: доказательство концепции

Совсем недавно были зарегистрированы драматические хондропротекторные эффекты у пациентов с РА и деструктивным артритом, ассоциированным со спондилоартропатией (СПА).У этих пациентов TNF-α, высвобождаемый в синовиальной мембране, запускает катаболический ауто / паракринный путь IL-1 хондроцитов в соседнем суставном хряще [141]. Результирующий каскад ауто / паракринного IL-1 будет вызывать разрушение внеклеточного матрикса суставного хряща. Лечение пациентов с РА рекомбинантными белками, поглощающими TNF-α, подавляет активность IL-1 хондроцитов и останавливает эрозивную прогрессию, продолжающуюся в течение этих воспалительных заболеваний [142]. Нейтрализация TNF-α при RA в конечном итоге приводит к очевидному восстановлению пораженных суставов [143].Повторное появление исчезнувшей суставной щели было зарегистрировано при периферическом артрите, связанном с СПА [144, 145] (рис. 3). Сходным образом при ОА ауто / паракринный TNF-α, возникающий в результате апоптоза хондроцитов [31–34] после чрезмерного механического стресса, вызывает индуцированное IL-1 разрушение внеклеточной среды суставного хряща. Насколько подобное блокирование TNF-α может привести к остановке прогрессирования этого заболевания, еще не изучено.

Рис.3.

Хондрозащита и регенерация суставного хряща блокаторами цитокинов. (A) Тазобедренный сустав пациента с анкилозирующим спондилитом до (слева) и после 1 года лечения инфликсимабом, блокирующим TNF-α моноклональным антителом. Прекращено развитие эрозии, вновь появилась суставная щель. (B) Такое же течение наблюдалось в третьем проксимальном межфаланговом суставе и втором дистальном межфаланговом суставе пациента, страдающего псориатическим артритом. Эти записи были получены после завершения серии проспективных рандомизированных плацебо-контролируемых исследований, одобренных местным комитетом по этике, в которые были включены 107 пациентов для изучения влияния инфликсимаба на клинические признаки спондилоартропатии [144]. , Ван дер Бош, представлен].Рентгеновские снимки пораженных суставов были сделаны при поступлении и через 1 год наблюдения. (C) При эрозивном ОА межфалангового сустава пальца подобный тип ремоделирования происходит спонтанно после прекращения деструктивного эпизода. Четыре рентгеновских снимка были сделаны с интервалом в 1 год [145].

Рис. 3.

Хондропротекция и регенерация суставного хряща цитокиноблокаторами. (A) Тазобедренный сустав пациента с анкилозирующим спондилитом до (слева) и после 1 года лечения инфликсимабом, блокирующим TNF-α моноклональным антителом.Прекращено развитие эрозии, вновь появилась суставная щель. (B) Такое же течение наблюдалось в третьем проксимальном межфаланговом суставе и втором дистальном межфаланговом суставе пациента, страдающего псориатическим артритом. Эти записи были получены после завершения серии проспективных рандомизированных плацебо-контролируемых исследований, одобренных местным комитетом по этике, в которые были включены 107 пациентов для изучения влияния инфликсимаба на клинические признаки спондилоартропатии [144]. , Ван дер Бош, представлен].Рентгеновские снимки пораженных суставов были сделаны при поступлении и через 1 год наблюдения. (C) При эрозивном ОА межфалангового сустава пальца подобный тип ремоделирования происходит спонтанно после прекращения деструктивного эпизода. Четыре рентгеновских снимка были сделаны с интервалом в 1 год [145].

Обсуждение

Идентичные пути цитокинов и факторов роста контролируют разрушение и восстановление при ОА и воспалительных заболеваниях суставов, таких как RA и SPA-ассоциированный артрит. Однонаправленные каскады цитокинов, управляемые TNF-α / IL-1, нарушают гомеостаз ECM суставного хряща при этих нарушениях.TNF-α, происходящий из синовиальной мембраны, запускает каскад во время воспалительных патологий, в то время как при ОА аутокринный TNF-α, высвобождаемый апоптозными клетками суставного хряща, вызывает активность IL-1. Как при воспалительных, так и при дегенеративных состояниях, каскады цитокинов, управляемые TNF-α / IL-1, преобладают над путями факторов роста, способствующих анаболической репарации. Однако, когда биологические препараты, блокирующие TNF-α, вводили при иммунологически опосредованных воспалительных артритах, безошибочно было продемонстрировано восстановление тканей.В СПА зафиксировано повторное появление ранее исчезнувшей суставной щели.

Точно так же репрессия каскадов цитокинов, управляемых TNF-α / IL-1, должна позволить репарации стать еще более очевидной при ОА, поскольку пути анаболического фактора роста также сверхэкспрессируются в этом состоянии. Было показано, что кортикостероиды, отдельные классы (поли) сульфатированных полисахаридов, тетрациклины, диацетилреин / реин, авокадо / соевые бобы и глюкозамин подавляют IL-1 и, по-видимому, подавляют нижестоящие характеристики IL-1, например.грамм. активность коллагеназы, протеогликаназы и ММП, экспрессия iNOS и повышенное высвобождение NO, а также выделение PGE 2 , IL-6 и IL-8. За исключением кортикостероидов и диацетилреина, эти агенты не продемонстрировали стимуляции активности фактора роста. Все эти CTSMA, способные напрямую влиять на синтез и высвобождение IL-1 in vitro , как было показано, обладают активностью DMOAD в экспериментальных моделях ОА и в популяциях людей с ОА коленных и пальцевых суставов.Эффекты DMOAD глюкозамина in vivo остаются несколько спорными, поскольку концентрации гексозаминов, которые были эффективны в экспериментах in vitro , никогда не были достигнуты при системном введении аминосахаров экспериментальным животным или людям. Фармакологическое усиление факторов, способствующих репарации, например Ожидается, что TGF-β и / или IGF-1 не сильно повлияют на изменение заболевания при ОА. Пути анаболического восстановления уже чрезмерно выражены при этом заболевании.Этим объясняется затяжной характер ОА и очевидные признаки ремоделирования тканей сустава ОА.

Поскольку однонаправленный каскад цитокинов, управляемый TNF-α / IL-1, был идентифицирован как лекарственная мишень при ОА, простые лабораторные процедуры позволят обнаружить новую серию CTSMA с активностями DMOAD.

Авторы заявили об отсутствии конфликта интересов.

Список литературы

1

Altman RD, Hochberg MC, Moskowitz RW, Schnitzer TJ.Рекомендации по медикаментозному лечению остеоартроза тазобедренного и коленного суставов. Обновление 2000 года. Подкомитет ACR по рекомендациям по остеоартриту.

Arthritis Rheum

2000

;

43

:

1905

–15,2

Chambers MG, Bayliss MT, Mason RM. Экспрессия цитокинов хондроцитов и факторов роста при остеоартрите мышей.

Тележка для лечения артроза

1997

;

5

:

301

–8.3

Моос В., Фикерт С., Мюллер Б., Вебер Ю., Сипер Дж.Иммуногистологический анализ экспрессии цитокинов при остеоартрите человека и здоровом хряще.

J Rheumatol

1999

;

26

:

870

–9,4

van Beuningen HM, van der Kraan PM, Arntz OJ, van den Berg WB. Защита от интерлейкина 1 индуцировала разрушение суставного хряща путем трансформации фактора роста бета: исследования на анатомически неповрежденном хряще in vitro и in vivo .

Ann Rheum Dis

1993

;

52

:

185

–91.5

Guenther HL, Guenther HE, Froesch ER, Fleisch H. Влияние инсулиноподобного фактора роста на синтез коллагена и гликозаминогликанов суставными хондроцитами кролика в культуре.

Experientia

1982

;

38

:

979

–81,6

McQuillan DL, Handley CJ, Campbell MA, Bolis S, Milway VE, Herington AC. Стимуляция синтеза протеогликана сывороткой и инсулиноподобным фактором роста-1 в культивируемом суставном хряще крупного рогатого скота.

Biochem J

1986

;

240

:

423

–30.7

Luyten FP, Hascall VC, Nissley SP, Morales TI, Reddi AH. Инсулиноподобные факторы роста поддерживают стабильный метаболизм протеогликанов в эксплантатах суставного хряща крупного рогатого скота.

Arch Biochem Biophys

1988

;

267

:

416

–25,8

Tesch GH, Handley CJ, Cornell HJ, Herington AC. Влияние свободных и связанных инсулиноподобных факторов роста на метаболизм протеогликанов в эксплантатах суставного хряща.

J Orthop Res

1992

;

10

:

14

–22.9

Verbruggen G, Malfait AM, Dewulf M, Broddelez C, Veys EM. Стандартизация питательных сред для изолированных суставных хондроцитов человека в гелеобразной суспензионной культуре агарозы.

Тележка для лечения артроза

1995

;

3

:

249

–59,10

Yaeger PC, Masi TL, de Ortiz JL, Binette F, Tubo R, McPherson JM. Синергетическое действие трансформирующего фактора роста-бета и инсулиноподобного фактора роста-I индуцирует экспрессию генов коллагена и аггрекана типа II в суставных хондроцитах взрослого человека.

Exp Cell Res

1997

;

237

:

318

–25,11

Verschure PJ, van Marle J, Joosten LA, van den Berg WB. Экспрессия хондроцитарного рецептора IGF-1 и реакция на стимуляцию IGF-1 в суставном хряще мыши во время различных фаз экспериментально индуцированного артрита.

Ann Rheum Dis

1995

;

54

:

645

–53,12

Саклатвала Дж., Пилсворт LMC, Сарсфилд С.Дж., Гравилович Дж., Хит Дж. К.. Катаболин свиньи — это форма интерлейкина 1.

Biochem J

1984

;

224

:

461

–6,13

Дингл Дж. Т., Саклатвала Дж., Хембри Р., Тайлер Дж., Фелл Х. Б., Джубб Р. Катаболический фактор хряща из синовиальной оболочки.

Biochem J

1979

;

184

:

177

–80,14

Dingle JT. Влияние синовиального катаболина на синтетическую активность хряща.

Connect Tiss Res

1984

;

12

:

277

–86,15

Тайлер Дж. А., Саклатвала Дж.Свиной ИЛ-1 (катаболин) вызывает резорбцию протеогликана хряща и предотвращает синтез протеогликана и коллагена.

Br J Rheumatol

1985

;

24 (Дополнение 1)

:

150

–5,16

Таскиран Д., Стефанович-Рачич М., Георгеску Х.И., Эванс Ч. Оксид азота опосредует подавление синтеза протеогликанов хряща интерлейкином-1.

Biochem Biophys Res Commun

1994

;

200

:

142

–8,17

Берд Т.А., Саклатвала Дж.Идентификация общего класса рецепторов с высоким сродством для обоих типов интерлейлина-1 на клетках соединительной ткани.

Nature

1986

;

324

:

263

–6,18

Чандрасекхар С., Харви А.К. Индукция рецепторов интерлейкина-1 на хондроцитах фактором роста фибробластов: возможный механизм модуляции активности интерлейкина-1.

J Cell Physiol

1989

;

138

:

236

–46,19

Colotta F, Re F, Muzio M et al .Рецептор интерлейкина-1 типа II: мишень-приманка для IL-1, которая регулируется IL-4.

Наука

1993

;

261

:

472

–5.20

Аттур М.Г., Дэйв М., Чиполлетта С. и др. . Обращение аутокринных и паракринных эффектов интерлейкина 1 (ИЛ-1) при артрите человека с помощью рецептора-ловушки ИЛ-1 типа II. Возможность фармакологического вмешательства.

J Biol Chem

2000

;

275

:

40307

–1521

Wang J, Elewaut D, Veys EM, Verbruggen G.Индуцированный инсулиноподобным фактором роста 1 рецептор интерлейкина-1 II подавляет активность интерлейкина-1 и контролирует гомеостаз внеклеточного матрикса хряща.

Arthritis Rheum

2003

;

48

:

1281

–91,22

Тайлер Дж.А. Инсулиноподобный фактор роста 1 может уменьшать деградацию и способствовать синтезу протеогликана в хряще, подвергающемся действию цитокинов.

Biochem J

1989

;

260

:

543

–8.23

Миддлтон Дж. Ф., Тайлер Дж. А. Повышение экспрессии гена инсулиноподобного фактора роста I в поражениях суставного хряща человека при остеоартрите.

Ann Rheum Dis

1992

;

51

:

440

–7,24

Миддлтон Дж., Манти А., Тайлер Дж. Рецептор инсулиноподобного фактора роста (ИФР), ИФР-I, интерлейкин-1 бета (ИЛ-1 бета) и экспрессия мРНК ИЛ-6 при остеоартрите и нормальном хряще человека.

J Histochem Cytochem

1996

;

44

:

133

–41.25

Verschure PJ, Marle JV, Joosten LA, Helsen MM, Lafeber FP, Berg WB. Локализация рецептора инсулиноподобного фактора роста-1 в нормальном и остеоартрозном хрящах человека в отношении синтеза и содержания протеогликана.

Br J Rheumatol

1996

;

35

:

1044

–55,26

Ван Дж., Вердонк П., Элеваут Д., Вейс Е.М., Вербрюгген Г. Гомеостаз внеклеточного матрикса нормальных и остеоартрозных хондроцитов суставного хряща человека in vitro.

Тележка для лечения артроза

2003

;

11

:

801

–9.27

Шлопов Б.В., Гумановская М.Л., Поспешный К.А. Аутокринная регуляция коллагеназы 3 (матриксная металлопротеиназа 13) при остеоартрите.

Arthritis Rheum

2000

;

43

:

195

–205.28

Pelletier JP, Martel-Pelletier J, Howell DS, Ghandur-Mnaymneh L, Enis JE, Woessner JF Jr. Коллагеназа и коллагенолитическая активность в остеоартритическом хряще человека.

Arthritis Rheum

1983

;

26

:

63

–8.29

Okada Y, Shinmei M, Tanaka O et al .Локализация матриксной металлопротеиназы 3 (стромелизина) в остеоартрозном хряще и синовиальной оболочке.

Lab Invest

1992

;

66

:

680

–90,30

Arner EC, Tortorella MD. Передача сигнала через рецепторы интегрина хондроцитов индуцирует синтез металлопротеиназы матрикса и действует синергично с интерлейкином-1.

Arthritis Rheum

1995

;

38

:

1304

–14,31

Орландо С., Сирони М., Бьянки Г. и др. .Роль металлопротеаз в высвобождении рецептора-ловушки IL-1 типа II.

J Biol Chem

1997

;

272

:

31764

–9,32

Penton-Rol G, Orlando S, Polentarutti N et al . Бактериальный липополисахарид вызывает быстрое выделение с последующим ингибированием экспрессии мРНК рецептора IL-1 типа II с сопутствующей активацией рецептора типа I и индукцией не полностью сплайсированных транскриптов.

J Immunol

1999

;

162

:

2931

–8.33

D’Lima DD, Hashimoto S, Chen PC, Colwell CW Jr, Lotz MK. Апоптоз хондроцитов человека в ответ на механическое повреждение.

Тележка для лечения артроза

2001

;

9

:

712

–9,34

Редман С.Н., Даутуэйт Г.П., Томсон Б.М., Арчер CW. Клеточные реакции суставного хряща на резкую и тупую травму.

Тележка для лечения артроза

2004

;

12

:

106

–16.35

Айзава Т., Кон Т., Эйнхорн Т.А., Герстенфельд Л.С.Индукция апоптоза хондроцитов фактором некроза опухоли-α.

J Orthop Res

2001

;

19

:

785

–96,36

Islam N, Haqqi TM, Jepsen KJ et al . Гидростатическое давление индуцирует апоптоз в хондроцитах человека из остеоартрозного хряща за счет усиления фактора некроза опухоли-α, индуцибельной синтазы оксида азота, p53, c-myc и bax-alpha, а также подавления bcl-2.

J Cell Biochem

2002

;

87

:

266

–78.37

Моос В., Фикерт С., Мюллер Б., Вебер Ю., Сипер Дж. Иммуногистологический анализ экспрессии цитокинов в человеческом остеоартрите и здоровом хряще.

J Rheumatol

1999

;

26

:

870

–9.38

Verdier MP, Seite S, Guntzer K, Pujol JP, Boumediene K. Иммуногистохимический анализ бета-изоформ трансформирующего фактора роста и их рецепторов в хряще человека из нормальных и остеоартрозных головок бедренной кости.

Rheumatol Int

2005

;

25

:

118

–24.39

Четина Е.В., Сквайрс Дж., Пул А.Р. Усиленная деградация коллагена II типа и очень ранняя очаговая дегенерация хряща связаны с активацией генов, связанных с дифференцировкой хондроцитов, в ранних поражениях суставного хряща человека.

J Ревматол

2005

;

32

:

876

–86,40

Harvey AK, Hrubey PS, Chandrasekhar S. Ингибирование активности интерлейкина-1 трансформирующим фактором роста бета включает подавление рецепторов интерлейкина-1 на хондроцитах.

Exp Cell Res

1991

;

195

:

376

–85.41

Эйлау О. Внутрисуставная гепариновая терапия истинного деформирующего артроза коленного сустава.

Мед Клин

1959

;

54

:

145

.42

Эйлау О. О патогенезе и причинном лечении артроза коленного сустава.

Мед Клин

1960

;

55

:

2367

–70,43

Momburg M, Stuhlsatz HW, Vogeli H, Vojtisek O, Eylau O, Greiling H.Клинические химические изменения в синовиальной жидкости после внутрисуставной инъекции полисульфата гликозаминогликана.

Z Rheumatol

1976

;

35 (Приложение 4)

:

389

–90,44

Нево З., Хорвиц А.Л., Дорфман А. Синтез хондромукопротеина хондроцитами в суспензионной культуре.

Дев Биол

1972

;

28

:

219

–28,45

Нево З., Дорфман А. Стимуляция синтеза хондромукопротеина в хондроцитах внеклеточным хондромукопротеином.

Proc Natl Acad Sci USA

1972

;

69

:

2069

–72,46

Kosher RA, Lash JW, Minor RR. Экологическое усиление хондрогенеза in vitro.

Дев Биол

1973

;

35

:

210

–20,47

Шварц Н.Б., Дорфман А. Стимуляция продукции хондроитинсульфат-протеогликана хондроцитами в монослое.

Conn Tiss Res

1975

;

3

:

115

–22,48

Verbruggen G, Veys EM.Влияние сульфатированных гликозаминогликанов на метаболизм протеогликанов в клетках синовиальной оболочки.

Acta Rheumatol

1977

;

1

:

75

–92,49

Verbruggen G, Veys EM. Влияние гиперсульфатированного гепариноида на метаболизм гиалуроната синовиальной клетки человека in vivo .

J Rheumatol

1979

;

6

:

554

–61,50

Kalbhen DA. Экспериментальное подтверждение противоартритной активности полисульфата гликозаминогликана.

Z Ревматол

1983

;

42

:

178

–84,51

Carreno MR, Muniz OE, Howell DS. Эффект гликозаминогликана сложного эфира полисерной кислоты на суставной хрящ при экспериментальном остеоартрите: влияние на морфологические переменные тяжести заболевания.

J Rheumatol

1986

;

13

:

490

–7,52

Бреннан Дж. Дж., Ахерн FX, Накано Т. Влияние лечения полисульфатом гликозаминогликана на прочность, содержание гиалуроновой кислоты в синовиальной жидкости и протеогликановый агрегат в суставном хряще хромых хряков.

Can J Vet Res

1987

;

51

:

394

–8,53

Убельхарт Д., Тонар Э. Дж., Чжан Дж., Уильямс Дж. М.. Защитный эффект экзогенного хондроитин-4,6-сульфата при острой деградации суставного хряща у кролика.

Тележка для лечения артроза

1998

;

6 (Дополнение A)

:

6

–13,54

Verbruggen G, Goemaere S, Veys EM. Хондроитинсульфат: S / DMOAD (лекарственное средство против остеоартрита, изменяющее структуру / заболевание) при лечении остеоартрита суставов пальцев.

Тележка для лечения артроза

1998

;

6 (Дополнение A)

:

37

–8,55

Verbruggen G, Goemaere S, Veys EM. Системы для оценки прогрессирования остеоартрита суставов пальцев и эффектов лекарств, влияющих на лечение остеоартрита.

Clin Rheumatol

2002

;

21

:

231

–43,56

Убельхарт Д., Тонар Э. Дж., Дельмас П. Д., Шантрейн А., Виньон Э. Влияние перорального хондроитинсульфата на прогрессирование остеоартрита коленного сустава: пилотное исследование.

Тележка для лечения артроза

1998

;

6 (Дополнение A)

:

39

–46,57

Убельхарт Д., Малез М., Марколонго Р. и др. . Прерывистое лечение остеоартрита коленного сустава пероральным хондроитинсульфатом: однолетнее рандомизированное двойное слепое многоцентровое исследование по сравнению с плацебо.

Тележка для лечения артроза

2004

;

12

:

269

–76,58

Мишель Б.А., Штуки Г., Фрей Д. и др. . Хондроитины 4 и 6 сульфат при остеоартрозе коленного сустава: рандомизированное контролируемое исследование.

Arthritis Rheum

2005

;

52

:

779

–86,59

Verbruggen G, Veys EM. Внутрисуставная инъекция пентозанполисульфата приводит к увеличению молекулярной массы гиалуронана в суставной жидкости.

Clin Exp Rheumatol

1992

;

10

:

249

–54,60

Francis DJ, Hutadilok N, Kongtawelert P, Ghosh P. Полисульфат пентозана и полисульфат гликозаминогликана стимулируют синтез гиалуронана in vivo .

Rheumatol Int

1993

;

13

:

61

–4,61

Verbruggen G, Cornelissen M, Elewaut D, Broddelez C., De Ridder L., Veys EM. Влияние полисульфатированных полисахаридов на аггреканы, синтезируемые дифференцированными суставными хондроцитами человека.

J Rheumatol

1999

;

26

:

1663

–71,62

Sadowski T., Steinmeyer J. Влияние полисульфатированного гликозаминогликана и триамцинолона ацетонида на продукцию протеиназ и их ингибиторов обработанными IL-1alpha суставными хондроцитами.

Biochem Pharmacol

2002

;

64

:

217

–27.63

Ван Л., Ван Дж., Альмквист К.Ф., Вейс Е.М., Вербругген Г. Влияние полисульфатированных полисахаридов и гидрокортизона на метаболизм внеклеточного матрикса суставных хондроцитов человека in vitro.

Clin Exp Rheumatol

2002

;

20

:

669

–76,64

Tung JT, Venta PJ, Caron JP. Индуцируемая экспрессия оксида азота в суставных хондроцитах лошади: эффекты противовоспалительных соединений.

Тележка для лечения артроза

2002

;

10

:

5

–12,65

Verdonk P, Wang J, Elewaut D, Broddelez C, Veys EM, Verbruggen G. Полисульфаты циклодекстрина усиливают восстановление внеклеточного матрикса хондроцитов человека.

Тележка для лечения артроза

2005

;

13

:

887

–95.66

Muller W., Panse P, Brand S, Staubli A. Исследование in vivo распределения, сродства к хрящам и метаболизма полисульфата гликозаминогликана (GAGPS, Arteparon).

Z Ревматол

1983

;

42

:

355

–61.67

Volpi N. Пероральное всасывание и биодоступность хондроитинсульфата ихтикового происхождения у здоровых добровольцев мужского пола.

Тележка для лечения артроза

2003

;

11

:

433

–41,68

Volpi N. Биодоступность хондроитинсульфата (Кондросульф) и его компонентов при пероральном введении у здоровых добровольцев мужского пола.

Тележка для лечения артроза

2002

;

10

:

768

–77.69

Хенротин Ю.Е., Санчес С., Деберг М.А. и др. . Неомыляемые вещества авокадо / соевые бобы увеличивают синтез аггрекана и снижают выработку катаболических и провоспалительных медиаторов хондроцитами человека при остеоартрите.

J Ревматол

2003

;

30

:

1825

–34,70

Kut-Lasserre C, Miller CC, Ejeil AL et al . Влияние неомыляемых веществ авокадо и сои на желатиназу A (MMP-2), стромелизин 1 (MMP-3) и тканевые ингибиторы секреции матриксной металлопротеиназы (TIMP-1 и TIMP-2) фибробластами человека в культуре.

J Periodontol

2001

;

72

:

1685

–94,71

Хайял MT, Эль-Газали, Массачусетс. Возможный «хондрозащитный» эффект неомыляемых компонентов авокадо и сои in vivo .

Drugs Exp Clin Res

1998

;

24

:

41

–50.72

Cake MA, Read RA, Guillou B., Ghosh P. Модификация патологии суставного хряща и субхондральной кости в модели остеоартрита менискэктомии у овец неомыляемыми веществами авокадо и сои (ASU).

Тележка для лечения артроза

2000

;

8

:

404

–11.73

Lequesne M, Maheu E, Cadet C, Dreiser RL. Структурное влияние неомыляемых веществ авокадо / сои на потерю суставной щели при остеоартрозе тазобедренного сустава.

Arthritis Rheum

2002

;

47

:

50

–8,74

Yu LP Jr, Smith GN Jr, Hasty KA, Brandt KD. Доксициклин подавляет коллагенолитическую активность XI типа экстрактов из хрящей остеоартрита человека и желатиназы.

J Rheumatol

1991

;

18

:

1450

–2,75

Шлопов Б.В., Смит Г.Н. мл., Коул А.А., Хэсти К.А. Дифференциальные паттерны ответа на доксициклин и трансформирующий фактор роста бета1 при подавлении коллагеназ в остеоартрите и нормальных хондроцитах человека.

Arthritis Rheum

1999

;

42

:

719

–27,76

Шлопов Б.В., Стюарт Ю.М., Гумановская М.Л., Спешка К.А. Регулирование коллагеназы хряща доксициклином.

J Ревматол

2001

;

28

:

835

–42,77

Borderie D, Hernvann A, Hilliquin P, Lemarchal H, Kahan A, Ekindjian OG. Тетрациклины подавляют выработку нитрозотиола цитокин-стимулированными синовиальными клетками остеоартрита.

Inflamm Res

2001

;

50

:

409

–14,78

Amin AR, Attur MG, Thakker GD et al . Новый механизм действия тетрациклинов: эффекты на синтазы оксида азота.

Proc Natl Acad Sci USA

1996

;

93

:

14014

–9,79

Smith GN Jr, Yu LP Jr, Brandt KD, Capello WN. Пероральный прием доксициклина снижает активность коллагеназы и желатиназы в экстрактах остеоартрозного хряща человека.

J Rheumatol

1998

;

25

:

532

–5,80

Jauernig S, Schweighauser A, Reist M, Von Rechenberg B., Schawalder P, Spreng D. Влияние доксициклина на выработку оксида азота и стромелизина у собак с разрывом черепной крестообразной связки.

Вет Сург

2001

;

30

:

132

–9,81

де Бри Э, Лей В., Свенссон О., Чоудхури М., Моак С.А., Гринвальд Р.А. Влияние ингибитора матриксных металлопротеиназ на спонтанный остеоартрит у морских свинок.

Adv Dent Res

1998

;

12

:

82

–5,82

Ю Л.П. младший, Смит Г.Н. мл., Брандт К.Д., Майерс С.Л., О’Коннор Б.Л., Брандт Д.А. Уменьшение тяжести остеоартроза собак путем профилактического лечения пероральным доксициклином.

Arthritis Rheum

1992

;

35

:

1150

–9,83

Brandt KD, Mazzuca SA, Katz BP et al . Влияние доксициклина на прогрессирование остеоартрита: результаты рандомизированного плацебо-контролируемого двойного слепого исследования.

Arthritis Rheum

2005

;

52

:

2015

–25,84

Franchi-Micheli S, Lavacchi L, Friedmann CA, Ziletti L. Влияние реина на простагландиноподобные вещества in vitro .

J Pharm Pharmacol

1983

;

35

:

262

–4,85

Pomarelli P, Berti M, Gatti MT, Mosconi P. Нестероидный противовоспалительный препарат, который стимулирует высвобождение простагландинов.

Farmaco Ed Sci

1980

;

35

:

836

–42,86

Pelletier JP, Mineau F, Fernandes JC, Duval N, Martel-Pelletier J. Диацерхеин и реин снижают уровень и активность индуцибельного синтеза оксида азота, стимулированные интерлейкином 1beta, одновременно стимулируя синтез циклооксигеназы-2 у человека. остеоартрозные хондроциты.

J Rheumatol

1998

;

25

:

2417

–24,87

Тамура Т., Омори К. Диацереин подавляет увеличение оксида азота в плазме при артрите, индуцированном адъювантом у крыс.

евро J Pharmacol

2001

;

419

:

269

–74,88

Attur MG, Patel RN, Patel PD, Abramson SB, Amin AR. Тетрациклин усиливает экспрессию ЦОГ-2 и продукцию простагландина E 2 независимо от его воздействия на оксид азота.

J Immunol

1999

;

162

:

3160

–7.89

Патель Р.Н., Аттур М.Г., Дэйв М.Н. и др. . Новый механизм действия химически модифицированных тетрациклинов: ингибирование производства простагландина E2, опосредованного ЦОГ-2.

Иммунология

1999

;

163

:

3459

–67,90

Ярон М., Ширази И., Ярон И. Анти-интерлейкин-1 эффекты диацереина и реина в синовиальной ткани и культурах хрящей человека при остеоартрите.

Тележка для лечения артроза

1999

;

7

:

272

–80.91

Martel-Pelletier J, Mineau F, Jolicoeur FC, Cloutier JM, Pelletier JP. In vitro эффекты диацереина и реина на системы интерлейкина 1 и фактора некроза опухоли альфа в синовиальной оболочке и хондроцитах человека при остеоартрите.

J Rheumatol

1998

;

25

:

753

–62.92

Moldovan F, Pelletier JP, Jolicoeur FC, Cloutier JM, Martel-Pelletier J. Diacerhein и rhein снижают индуцированную ICE активацию IL-1beta и IL-18 в остеоартритическом хряще человека.

Тележка для лечения артроза

2000

;

8

:

186

–96,93

Мендес А.Ф., Карамона М.М., де Карвалью А.О., Лопес М.С. Диацереин и реин предотвращают индуцированную интерлейкином-1бета активацию ядерного фактора каппаВ, ингибируя деградацию ингибитора каппаВ-альфа.

Pharmacol Toxicol

2002

;

91

:

22

–8.94

Дозин Б., Мальпели М., Камарделла Л., Канседда Р., Пьетранджело А. Ответ молодых, пожилых и остеоартрозных суставных хондроцитов человека на воспалительные цитокины: молекулярные и клеточные аспекты.

Матрикс Биол

2002

;

21

:

449

–59,95

Boittin N, Redini F, Loyau G, Pujol JP. Влияние диацереина (ART 50) на синтез матрикса и секрецию коллагеназы культивированными хондроцитами суставов кроликов.

Rev Rhum

1993

;

60

:

68S

–76S.96

Tamura T., Kosaka N, Ishiwa J, Sato T, Nagase H, Ito A. Rhein, активный метаболит диацереина, подавляет продукцию проматричных металлопротеиназ-1 , -3, -9 и -13 и повышают продукцию тканевого ингибитора металлопротеиназы-1 в культивируемых суставных хондроцитах кролика.

Тележка для лечения артроза

2001

;

9

:

257

–63.97

Тамура Т., Омори К. Рейн, активный метаболит диацереина, подавляет индуцированную интерлейкином-1альфа деградацию протеогликана в культивируемых суставных хондроцитах кролика.

Jpn J Pharmacol

2001

;

85

:

101

–4,98

Фелисаз Н., Бумедьен К., Гайор С. и др. . Стимулирующее действие диацереина на экспрессию TGF-beta1 и beta2 в суставных хондроцитах, культивируемых с интерлейкином-1 и без него.

Тележка для лечения артроза

1999

;

7

:

255

–64,99

Mazieres B, Berdah L, Thiechart M, Viguier G. Diacetylrhein на постконтузионной модели экспериментального остеоартрита у кролика.

Rev Rhum

1993

;

60

:

77S

–81S.100

Тамура Т., Омори К., Накамура К. Влияние диацереина на спонтанный полиартрит у самцов новозеландских черных мышей / KN.

Тележка для лечения артроза

1999

;

7

:

533

–8.101

Carney SL. Влияние диацетилреина на развитие экспериментального остеоартроза. Биохимическое исследование.

Тележка для лечения артроза

1996

;

4

:

251

–61.102

Брандт К.Д., Смит Дж., Канг С.И., Майерс С., О’Коннор Б., Альбрехт Н. Эффекты диацереина в ускоренной модели остеоартрита у собак.

Тележка для лечения артроза

1997

;

5

:

438

–49.103

Смит Г. Н. мл., Майерс С. Л., Брандт К. Д., Миклер Э. А., Альбрехт М.Э.Лечение диацереином снижает тяжесть остеоартрита в модели остеоартрита с дефицитом крестообразных связок у собак.

Arthritis Rheum

1999

;

42

:

545

–54.104

Дугадос М., Нгуен М., Бердах Л., Мазьер Б., Лекесн М.; Исследовательская группа ECHODIAH. Оценка структурно-модифицирующих эффектов диацереина при остеоартрите тазобедренного сустава: ECHODIAH, трехлетнее плацебо-контролируемое исследование. Оценка хондромодулирующего эффекта диацереина при ОА бедра.

Arthritis Rheum

2001

;

44

:

2539

–47.105

Pham T, Le Henanff A, Ravaud P, Dieppe P, Paolozzi L., Dougados M. Оценка симптоматической и структурной эффективности нового соединения гиалуроновой кислоты, NRD101, по сравнению с диацереином и плацебо в 1-летнем рандомизированном контролируемом исследовании симптоматического остеоартрита коленного сустава.

Ann Rheum Dis

2004

;

63

:

1611

–7.106

Gouze JN, Bianchi A, Becuwe P et al .Глюкозамин модулирует индуцированную IL-1 активацию хондроцитов крысы на уровне рецепторов и путем ингибирования пути NF-каппа B.

FEBS Lett

2002

;

510

:

166

–70.107

Shikhman AR, Kuhn K, Alaaeddine N, Lotz M. N-ацетилглюкозамин предотвращает опосредованную IL-1 бета активацию хондроцитов человека.

J Immunol

2001

;

166

:

5155

–60.108

Largo R, Alvarez-Soria MA, Diez-Ortego I et al .Глюкозамин ингибирует индуцированную IL-1beta активацию NFkappaB в хондроцитах человека, страдающих остеоартритом.

Тележка для лечения артроза

2003

;

11

:

290

–8.109

Piperno M, Reboul P, Hellio Le Graverand MP et al . Сульфат глюкозамина модулирует дисрегулируемую активность хондроцитов человека, страдающих остеоартритом, in vitro .

Тележка для лечения артроза

2000

;

8

:

207

–12.110

Накамура Х., Шибакава А., Танака М., Като Т., Нисиока К.Влияние гидрохлорида глюкозамина на продукцию простагландина E2, оксида азота и металлопротеаз хондроцитами и синовиоцитами при остеоартрите.

Clin Exp Rheumatol

2004

;

22

:

293

–9.111

Gouze JN, Bordji K, Gulberti S et al . Интерлейкин-1beta подавляет экспрессию глюкуронозилтрансферазы I, ключевого фермента, запускающего биосинтез гликозаминогликанов: влияние глюкозамина на опосредованные интерлейкином-1beta эффекты в хондроцитах крыс.

Arthritis Rheum

2001

;

44

:

351

–60.112

Fenton JI, Chlebek-Brown KA, Caron JP, Orth MW. Влияние глюкозамина на интерлейкин-1 суставной хрящ.

Equine Vet J Suppl

2002

;

34

:

219

–23.113

Fenton JI, Chlebek-Brown KA, Peters TL, Caron JP, Orth MW. Глюкозамин HCl снижает деградацию суставного хряща лошади в культуре эксплантата.

Тележка для лечения артроза

2000

;

8

:

258

–65.114

Tung JT, Venta PJ, Eberhart SW, Yuzbasiyan-Gurkan V, Alexander L, Caron JP. Влияние препаратов против артрита на экспрессию генов и ферментативную активность циклооксигеназы-2 в культивируемых хондроцитах лошадей.

Am J Vet Res

2002

;

63

:

1134

–9.115

Dodge GR, Jimenez SA. Сульфат глюкозамина регулирует уровни аггрекана и матриксной металлопротеиназы-3, синтезируемые культивированными суставными хондроцитами человека, страдающими остеоартритом.

Тележка для лечения артроза

2003

;

11

:

424

–32.116

Sandy JD, Gamett D, Thompson V, Verscharen C. Опосредованный хондроцитами катаболизм аггрекана: аггреканазозависимое расщепление, индуцированное интерлейкином-1 или ретиноевой кислотой, может ингибироваться глюкозамином.

Biochem J

1998

;

335

:

59

–66.117

Патвари П., Курц Б., Сэнди Д.Д., Гродзинский А.Дж. Маннозамин подавляет опосредованные агреканазой изменения физических свойств и биохимического состава суставного хряща.

Arch Biochem Biophys

2000

;

374

:

79

–85.118

де Маттей М., Пеллати А., Паселло М. и др. . Высокие дозы глюкозамина-HCl оказывают пагубное воздействие на эксплантаты суставного хряща крупного рогатого скота, культивируемые in vitro .

Тележка для лечения артроза

2002

;

10

:

816

–25.119

Tiraloche G, Girard C, Chouinard L et al . Влияние перорального глюкозамина на деградацию хряща на кроличьей модели остеоартрита.

Arthritis Rheum

2005

;

52

:

1118

–28.120

Шихман А.Р., Амиэль Д., Д’Лима Д. и др. . Хондропротекторная активность N-ацетилглюкозамина у кроликов с экспериментальным остеоартрозом.

Ann Rheum Dis

2005

;

64

:

89

–94.121

Reginster JY, Deroisy R, Rovati LC et al . Долгосрочные эффекты сульфата глюкозамина на прогрессирование остеоартрита: рандомизированное плацебо-контролируемое клиническое исследование.

Ланцет

2001

;

357

:

251

–6.122

Pavelka K, Gatterova J, Olejarova M, Machacek S, Giacovelli G, Rovati LC. Использование сульфата глюкозамина и замедление прогрессирования остеоартрита коленного сустава: трехлетнее рандомизированное плацебо-контролируемое двойное слепое исследование.

Arch Intern Med

2002

;

162

:

2113

–23.123

Knudsen PJ, Dinarello CA, Strom TB. Глюкокортикоиды подавляют транскрипционную и посттранскрипционную экспрессию интерлейкина 1 в клетках U937.

J Immunol

1987

;

139

:

4129

–34.124

Ли С.В., Цоу А.П., Чан Х. и др. . Глюкокортикоиды избирательно подавляют транскрипцию гена интерлейкина 1 бета и снижают стабильность мРНК интерлейкина 1 бета.

Proc Natl Acad Sci USA

1988

;

85

:

1204

–8.125

Pelletier JP, Cloutier JM, Martel-Pelletier J. Влияние тиапрофеновой кислоты, салицилата натрия и гидрокортизона in vitro на метаболизм протеогликанов остеоартрозного хряща человека.

J Rheumatol

1989

;

16

:

646

–55,126

Hill DJ. Влияние кортизола на пролиферацию клеток, синтез и деградацию протеогликанов в хрящевых зонах реберно-хрящевой пластины роста теленка in vitro с активностью соматомедина плазмы крысы и без нее.

J Endocrinol

1981

;

88

:

425

–35,127

Такигава М., Такано Т., Накагава К., Сакуда М., Судзуки Ф. Стимуляция пролиферации гидрокортизоном и синтеза гликозаминогликанов в черепно-лицевых хондроцитах кролика in vitro .

Arch Oral Biol

1988

;

33

:

893

–9,128

Макгуайр М.Б., Мерфи М., Рейнольдс Дж. Дж., Рассел Р.Г.Г. Производство коллагеназы и ингибитора (ТИМП) нормальной, ревматоидной и остеоартритической синовиальной оболочкой in vitro : эффекты гидрокортизона и индометацина.

Clin Biol

1981

;

61

:

703

–10.129

Пеллетье Дж. П., Мартель-Пеллетье Дж. Деградация хряща нейтральными протеогликаназами при экспериментальном остеоартрите.

Подавление стероидами. Arthritis Rheum

1985

;

28

:

1393

–401.130

Martel-Pelletier J, Cloutier JM, Pelletier JP. Нейтральные протеазы синовиальной оболочки при остеоартрите человека.

Arthritis Rheum

1986

;

29

:

1112

–21.131

Pelletier JP, Martel-Pelletier J, Cloutier JM, Woessner JF Jr. Активность кислой металлопротеиназы, разрушающей протеогликаны, в хрящах остеоартрита человека и эффекты внутрисуставных инъекций стероидов.

Arthritis Rheum

1987

;

30

:

541

–8.132

Pelletier JP, Mineau F, Raynauld JP, Woessner JF, Gunja-Smith Z, Martel-Pelletier J. Внутрисуставные инъекции метилпреднизолона ацетата уменьшают остеоартритические поражения параллельно с синтезом хондроцитарного стромелизина.

Arthritis Rheum

1994

;

37

:

414

–23.133

Itagane Y, Inada H, Fujita K, Isshiki G.Взаимодействие между стероидными гормонами и инсулиноподобным фактором роста-I в хондроцитах кролика.

Эндокринология

1991

;

128

:

1419

–24.134

Van der Kraan PM, Vitters EL, Postma NS, Verbunt J, van den Berg WB. Поддержание синтеза крупных протеогликанов в анатомически неповрежденном суставном хряще мыши с помощью стероидов и инсулиноподобного фактора роста I.

Ann Rheum Dis

1993

;

52

:

734

–41.135

Van Osch GJ, van der Veen SW, Verwoerd-Verhoef HL. In vitro повторная дифференцировка выращенных в культуре кроличьих и человеческих аурикулярных хондроцитов для реконструкции хряща.

Plast Reconstr Surg

2001

;

107

:

433

–40,136

Коломбо С., Батлер М., Хикман Л., Селвин М., Диаграмма J, Стейнец Б. Новая модель остеоартрита у кроликов. II. Оценка антиостеоартрозных эффектов выбранных противоревматических препаратов, применяемых системно.

Arthritis Rheum

1983

;

26

:

1132

–9.137

Батлер М., Коломбо С., Хикман Л. и др. . Новая модель остеоартроза у кроликов. III. Оценка антиостеоартрозных эффектов выбранных препаратов, вводимых внутрисуставно.

Arthritis Rheum

1983

;

26

:

1380

–6,138

Williams JM, Brandt KD. Гексацетонид триамцинолона защищает от фибрилляции и образования остеофитов после химически индуцированного повреждения суставного хряща.

Arthritis Rheum

1985

;

28

:

1267

–74.139

Пеллетье Дж. П., Мартель-Пеллетье Дж. Защитные эффекты кортикостероидов на повреждения хряща и образование остеофитов в модели остеоартрита у собак Понд-Нуки.

Arthritis Rheum

1989

;

32

:

181

–93.140

Wang J, Elewaut D, Hoffman I., Veys EM, Verbruggen G. Физиологические уровни гидрокортизона поддерживают оптимальный метаболизм внеклеточного матрикса хондроцитов.

Ann Rheum Dis

2004

;

63

:

61

–6.141

Бреннан Ф.М., Чантри Д., Джексон А., Майни Р., Фельдманн М. Ингибирующее действие антител ФНО-альфа на выработку интерлейкина-1 синовиальными клетками при ревматоидном артрите.

Ланцет

1989

;

2

:

244

–7.142

Lipsky PE, van der Heijde DM, St Clair EW et al . Инфликсимаб и метотрексат в лечении ревматоидного артрита.

Исследовательская группа по исследованию противоопухолевого фактора некроза при ревматоидном артрите с сопутствующей терапией.N Engl J Med

2000

;

343

:

1594

–602.143

Смолен Дж. С., Хан С., Бала М. и др. .; Исследовательская группа ATTRACT. Доказательства радиографической пользы лечения инфликсимабом плюс метотрексат у пациентов с ревматоидным артритом, у которых не было клинического улучшения: подробный субанализ данных исследования противоопухолевого фактора некроза при ревматоидном артрите с исследованием сопутствующей терапии.

Arthritis Rheum

2005

;

52

:

1020

–30.144

Круитхоф Э., Ван ден Бош Ф., Баетен Д. и др. . Повторные инфузии инфликсимаба, химерного моноклонального антитела против TNFalpha, пациентам с активной спондилоартропатией: наблюдение в течение одного года.

Ann Rheum Dis

2002

;

61

:

207

–12.145

Verbruggen G, Veys EM. Системы числовой оценки анатомической эволюции остеоартроза суставов пальцев.

Arthritis Rheum

1996

;

39

:

308

–20.

© Автор 2005. Опубликовано Oxford University Press от имени Британского общества ревматологов. Все права защищены. Для получения разрешений обращайтесь по электронной почте: [email protected]

.

Хондропротекторы при дегенеративных заболеваниях суставов | Ревматология

Аннотация

Катаболические пути цитокинов и анаболических факторов роста контролируют разрушение и восстановление при остеоартрите (ОА).Однонаправленный каскад цитокинов, управляемый TNF-α / IL-1, нарушает гомеостаз внеклеточного матрикса суставного хряща при ОА. Хотя хондроциты в хряще OA сверхэкспрессируют анаболический инсулиноподобный фактор роста (IGF) и его специфический рецептор (IGFRI), аутокринный TNF-α, высвобождаемый апоптозными клетками суставного хряща, запускает каскад, управляемый ауто / паракринным IL-1, который перекрывает активность фактора роста которые поддерживают восстановление при дегенеративных заболеваниях суставов. Хондропротекция с повторным появлением исчезнувшей суставной щели была безошибочно задокументирована в периферических суставах пациентов, страдающих спондилоартропатией, при лечении агентами, блокирующими TNF-α, которые подавляли однонаправленный цитокиновый каскад, управляемый TNF-α / IL-1.Серия агентов, модифицирующих структуру соединительной ткани (CTSMA), которые непосредственно влияют на синтез ИЛ-1 и высвобождают in vitro и снижают модулирующие характеристики нижерасположенного ИЛ-1, например активности коллагеназы, протеогликаназы и матриксной металлопротеиназы, экспрессия индуцибельной синтазы оксида азота, повышенное высвобождение оксида азота и секреция простагландина E 2 , IL-6 и IL-8, как было показано, обладают модифицирующим заболевание OA активность лекарственного средства (DMOAD) в экспериментальных моделях ОА и у людей с ОА суставов пальцев и коленей.Примерами являются кортикостероиды, некоторые сульфатированные полисахариды, химически модифицированные тетрациклины, диацетилреин / реин, глюкозамин и неомыляемые вещества авокадо / сои.

Утрата функции является следствием анатомических изменений тканей суставов при остеоартрозе (ОА). Вмешательство в анатомическое развитие ОА, по-видимому, является методом сохранения нормальной функции суставов. Вещества, которые защищают суставной хрящ во время ОА, получили название хондрозащитных средств.Когда кажется, что они изменяют течение заболевания, эти агенты могут быть названы лекарствами, модифицирующими течение болезни, (DMOAD) [1]. Боль в суставах при остеоартрите объясняется различными причинами, вторичными по отношению к анатомическим изменениям, например: воспалительные явления в синовиальной оболочке и субхондральная внутрикостная гипертензия из-за венозного застоя. В этом обзоре будут рассмотрены аспекты хондропротекторной терапии DMOAD, а не облегчение клинических симптомов, которые в конечном итоге могут возникнуть при назначении пациентам терапии DMOAD.

Гомеостаз внеклеточного матрикса здорового суставного хряща

Гомеостаз внеклеточного матрикса (ЕСМ) суставного хряща зависит от реакции клеток суставного хряща на ауто- и паракринные анаболические и катаболические пути. Наиболее важные факторы роста и цитокины, которые, как известно, участвуют в метаболизме хрящей, вырабатываются самими хондроцитами [2, 3]. Синтез и накопление ЕСМ регулируется местно продуцируемыми факторами роста, такими как инсулиноподобные факторы роста (IGF) и трансформирующий фактор роста-β (TGF-β).Специфическая регуляторная роль TGF-β была предложена при патологических условиях [4], и большое количество экспериментальных данных подтвердило важность IGF-1 как промотора роста и синтеза матрикса хондроцитами в здоровом суставном хряще. IGF-1 усиливает синтез аггрекана клетками или эксплантами суставного хряща [5-10] и in vivo и на животных моделях [11]. Оборот и деградация матрикса зависят от реакции клетки суставного хряща на катаболические цитокины, из которых IL-1α и β являются основными агонистами [12, 13].Было показано, что помимо своей способности вызывать деградацию суставного хряща, IL-1 подавляет синтез аггрекана и коллагена хондроцитами [14, 15]. Это снижение продукции соединений ЕСМ частично опосредовано ИЛ-1-индуцированным образованием оксида азота (NO) [16]. Эффекты IL-1 опосредуются высокоаффинным рецептором клеточной поверхности (IL-1RI) [17, 18]. Важными контролирующими факторами активности IL-1 являются белки, относящиеся к семейству рецепторов IL-1, среди которых рецептор-ловушка IL-1 типа 2 (IL-1RII) экспрессируется на плазматической мембране хондроцитов и связывает IL-1α и β, но не не передавать сигналы ИЛ-1 [19, 20].Интересно, что IGF, как было показано, активирует рецептор-ловушку IL-1 IL-1RII, тем самым обращая активность IL-1 [21]. Это открытие согласуется с наблюдением, что IGF-1 непосредственно снижает как базальную, так и стимулируемую цитокинами деградацию [22] и депрессию основного вещества суставного хряща [21]. Таким образом, повышая регуляцию IL-1RII, IGF-1 защищает ECM хряща от индуцированного IL-1 разрушения (рис. 1A).

Рис. 1.

Пути IL-1 / IGF, контролирующие обмен внеклеточного матрикса (ECM) в (A) здоровом хряще, (B) OA хряще и (C) OA хряще, когда проводится репрессивная терапия IL-1.(A) Активность IL-1 контролируется IGF-1 в нормальном хряще. Через повышающую регуляцию IL-1RII IGF-1 защищает ECM хряща от индуцированного IL-1 разрушения. (B) Считается, что при ОА TNF-α, высвобождаемый апоптозными клетками суставного хряща, вызывает выделение IL-1RII и запускает каскад, управляемый ауто / паракринным IL-1, что приводит к резорбции ECM. По неизвестным причинам хондроциты в хряще OA сверхэкспрессируют анаболическую активность фактора роста IGF-1 / IGF-RI. (C) Подавление активности IL-1 в хрящевых клетках, которые сверхэкспрессируют IGF-1, приводит к восстановлению ECM.

Рис. 1.

Пути IL-1 / IGF, контролирующие обмен внеклеточного матрикса (ECM) в (A) здоровом хряще, (B) хряще OA и (C) хряще OA, когда проводится репрессивная терапия IL-1. (A) Активность IL-1 контролируется IGF-1 в нормальном хряще. Через повышающую регуляцию IL-1RII IGF-1 защищает ECM хряща от индуцированного IL-1 разрушения. (B) Считается, что при ОА TNF-α, высвобождаемый апоптозными клетками суставного хряща, вызывает выделение IL-1RII и запускает каскад, управляемый ауто / паракринным IL-1, что приводит к резорбции ECM.По неизвестным причинам хондроциты в хряще OA сверхэкспрессируют анаболическую активность фактора роста IGF-1 / IGF-RI. (C) Подавление активности IL-1 в хрящевых клетках, которые сверхэкспрессируют IGF-1, приводит к восстановлению ECM.

Патология метаболических путей цитокинов и факторов роста, принимаемых ОА

Сообщалось о повышении регуляции как катаболических [2, 3, 23, 24], так и анаболических [2, 3, 23–26] путей в хондроцитах и ​​хрящах при ОА. Корреляция с возникновением и степенью патологии ОА была отмечена для ИЛ-1β [2, 3, 27], и эти повышенные уровни катаболических цитокинов воплощены в хорошо документированном увеличении активности металлопротеиназ, которые были выше в хряще ОА по сравнению с морфологически нормальными. хрящ из того же сустава [27–30].Кроме того, в хондроцитах ОА было обнаружено увеличение плотности рецепторов IL-1RI по сравнению с нормальными хондроцитами. Уровни мРНК и белка IGF-1 и его рецептора IGFRI были значительно выше в фибриллированном хряще OA, чем в нефибриллированном хряще OA тазобедренного и коленного суставов [23, 26]. Самые сильные сигналы сообщения IGF-1 или уровни белка наблюдались в хондроцитах более продвинутых поражений [23, 26]. Когда сравнивали клетки, полученные из нормальной ткани и ткани ОА из одних и тех же коленных суставов человека, ассоциированный с клетками аггрекан и коллаген типа II были значительно уменьшены вокруг хондроцитов, полученных из патологической ткани.Одновременно хондроциты из фибриллированного хряща OA экспрессировали значительно более высокие внутриклеточные уровни IL-1α и β и повышали уровень IL-1RI, связанный с плазматической мембраной. В то же время наблюдались значительно более высокие уровни внутриклеточного IGF-1 и IGF-R1, связанного с плазматической мембраной. Неожиданно оказалось, что в присутствии этой повышенной активности IGF экспрессия связанного с плазматической мембраной рецептора-ловушки IL-1RII была снижена в хондроцитах OA [26]. Снижение уровней рецептора-ловушки IL-1RII плазматической мембраны на хондроцитах ОА может быть связано с вмешательством других аутокринных цитокиновых путей.В этом контексте было показано, что TNF-α вызывает быстрое выделение IL-1RII из мембран миеломоноцитарных клеток [31, 32]. Подобный эффект TNF-α на клетки суставного хряща еще предстоит продемонстрировать. Однако присутствие TNF-α в хрящах, подвергшихся механическому повреждению, неоднократно подтверждалось примерами. Травма суставных хондроцитов вызывает апоптоз [33, 34], а апоптоз опосредуется аутокринным путем TNF [35, 36]. Повышенная активность TGF-β в хряще OA [37–39], вызывающая понижающую модуляцию передачи сигналов IL-1RI [40], может частично компенсировать потери IL-1RII, вызванные ауто / паракринной активностью TNF-α.Однако если необходимо идентифицировать метаболические пути цитокинов и факторов роста, TNF-α и IL-1β и их сигнальные рецепторы являются основными кандидатами (рис. 1B).

Агенты, модифицирующие структуру соединительной ткани (CTSMA), и лекарственные средства от остеоартрита, модифицирующие заболевание (DMOAD)

Первые попытки улучшить структуру и функцию соединительной ткани синовиальных суставов, тем самым облегчить симптомы дегенеративных заболеваний суставов, были основаны на расплывчатых предположениях о том, что обильное введение предшественников компонентов внеклеточного матрикса поможет клеткам суставного хряща восполнить утраченную среду. .Это предположение побудило врачей использовать такие вещества, как глюкозамин и сульфат или гликозаминогликаны, с целью улучшения восстановления хряща при дегенеративных заболеваниях суставов. Аналогичным образом, первое внутрисуставное введение полисульфата хондроитина было основано на предположении, что этот препарат гепариноидного типа заменит гиалуронан в качестве лубриканта и снизит уровень фибриногена в воспаленных суставах, и что это даст терапевтическое преимущество [41, 42]. Неожиданно некоторые пациенты сообщили об облегчении симптомов после прохождения этой процедуры, и даже сообщалось о некоторых изменениях в химическом составе синовиальной жидкости [43].

Наряду с глубоким поиском механизмов, посредством которых ткани суставов разрушаются в ходе воспалительных или дегенеративных заболеваний суставов, исследователи более методично искали биологические агенты, способные восстанавливать поврежденные соединительные ткани. Поскольку суставной хрящ является одной из основных тканей-мишеней, поражаемых в ходе ревматических заболеваний суставов, многие исследования были сосредоточены на метаболических характеристиках единственной клетки, находящейся в этой ткани: хондроцита. Вещества, защищающие суставной хрящ при деструктивных заболеваниях суставов, получили название хондрозащитных средств.Когда это произошло in vivo в суставах с остеоартритом, эти агенты были названы лекарствами от остеоартрита, модифицирующими заболевание (DMOAD) [1].

Поскольку ауто / паракринный фактор роста и каскады цитокинов, лежащие в основе развития, гомеостаза и разрушения внеклеточного матрикса суставного хряща, ранее не были известны, первые исследования биологических агентов, способных изменять структуру соединительной ткани в положительную сторону, в основном были сосредоточены на от способности этих агентов улучшать синтез или ухудшать разложение соединений ЕСМ, e.грамм. аггрекан и коллаген. Согласно этому определению, ряд веществ можно классифицировать как вещества, модифицирующие структуру соединительной ткани (CTSMA). Среди них неоднократно упоминались сульфатированные гликозаминогликаны и глюкозамин, химически модифицированные тетрациклины, такие как доксициклин и миноциклин, диацетилреин и его активный метаболит реин, а также неомыляемые вещества авокадо / сои.

Сульфатные полисахариды и хондрозащита

Среди первых веществ, способных улучшать накопление соединений ЕСМ, были так называемые хондромукопротеины [44–46], смесь продуктов деградации протеогликанов, в которых присутствовал хондроитинсульфат.Затем была выдвинута гипотеза, что продукты распада ВКМ, содержащие хондроитинсульфат, каким-то образом оказывают положительную обратную связь на хондроциты суставного хряща. Возможность вмешательства сульфатированных полисахаридов в процессы восстановления клеток соединительной ткани in vitro была впервые описана в середине 1970-х годов [47, 48]. Позже было показано, что полисульфат хондроитинсульфата улучшает синтез гиалуронана в синовиальных суставах in vivo у людей [49]. Тот же препарат, а также его природный аналог, хондроитинсульфат, улучшали функцию репарации хондроцитов in vivo в различных экспериментальных моделях остеоартрита [50–53].Недавно рандомизированные двойные слепые плацебо-контролируемые терапевтические испытания привели к выводу, что эти CTSMA обладают свойствами DMOAD, поскольку они, как было показано, замедляют прогрессирование эрозивного ОА в межфаланговых суставах пальцев [54, 55] и ОА коленного сустава. у человека [56–58].

In vitro и in vivo эксперименты в различных исследовательских центрах, посвященные влиянию на метаболизм молекул межклеточного матрикса (протеогликаны, аггреканы, гиалуронан), показали, что большинство (поли) сульфатированных полисахаридов влияют на клетки соединительной ткани (хрящевые клетки, синовиальные клетки, фибробласты) аналогичным образом [48, 59–61].С улучшением нашего понимания ауто / паракринного фактора роста и цитокиновых путей, которые контролируют гомеостаз здоровых соединительных тканей, стало возможным изучить механизм действия этих CTSMA. Недавние исследования сульфатированных полисахаридов показали, что эти агенты действуют в биологических системах, подавляя важные катаболические ауто / паракринные цитокиновые пути, такие как IL-1, тем самым улучшая накопление соединений ECM в клеточно-ассоциированном матриксе этих клеток.Эксперименты с бычьими хрящевыми клетками, полученными из макроскопически интактных пястно-фаланговых суставов, показали, что физиологические концентрации полисульфата хондроитина значительно снижают нижестоящие эффекты IL-1, такие как активность коллагеназы, протеогликаназы и матриксной металлопротеиназы (MMP) -1 и MMP-3 [62]. Кроме того, полисульфат хондроитина ингибировал индуцированную IL-1 экспрессию мРНК тканевого активатора плазминогена (tPA) [62]. Аналогичным образом, полисульфат ксилозана и полисульфат хондроитина восстанавливали накопление аггрекана, гиалуронана и коллагена типа II в клеточно-ассоциированном матриксе в обработанных IL-1β хондроцитах человека, культивируемых в агарозе.Этот эффект, вероятно, является частично результатом подавления MMPs [63]. Кроме того, в культивируемых хондроцитах лошадей полисульфат хондроитина значительно снижал экспрессию индуцибельной синтазы оксида азота (iNOS), усиленную IL-1β, что сопровождалось повышенным высвобождением NO. Хондроитинполисульфат снижает концентрацию нитрита в супернатантах этих IL-1β-стимулированных культур [64]. Наконец, новый полисульфатированный полисахарид, полисульфат циклодекстрина, продемонстрировал эффекты модификации структуры хряща in vitro , поскольку он улучшал синтез аггрекана и накопление связанных с клетками макромолекул матрикса клетками суставного хряща человека в альгинате.Здесь впервые было показано, что этот эффект частично является результатом прямой репрессии IL-1, поскольку клетки, обработанные полисульфатом циклодекстрина, экспрессируют значительно меньшие количества внутриклеточных IL-1α и β [65]. Те же обработанные β-циклодекстрином хондроциты высвобождали значительно меньше ИЛ-6 в супернатантную культуральную среду, эффект, который, как известно, является результатом ауто / паракринной стимуляции ИЛ-1 [65]. Следует напомнить, что концентрации полисахаридов в супернатантах культур в большинстве описанных экспериментов in vitro и уровни полисахаридов в плазме или хрящевой ткани, полученные у людей после перорального введения, были одного порядка [66–68].

Неомыляемые вещества из авокадо / сои

Сообщалось, что неомыляемые вещества авокадо / сои подавляют катаболическую активность хондроцитов и увеличивают накопление протеогликана хондроцитами ОА в культуре. Неомыляемые вещества из авокадо / сои были мощными ингибиторами основной продукции ММР-3 хондроцитами ОА и продукции IL-6, IL-8, NO и простагландина E 2 (PGE 2 ) [69]. Все эти биологические активности зависят от ИЛ-1 и выражены в хондроцитах ОА.Точно так же неомыляемые вещества из авокадо / сои обращали вспять эффекты IL-1β в фибробластах десен из воспаленных тканей [70]. Эффекты этих экстрактов, подавляющие IL-1, защищали подкожно имплантированный хрящ от деградации [71]. In vivo Эффекты DMOAD после введения неомыляемых веществ из авокадо / сои были описаны в модели менискэктомии у овец [72] и, возможно, в человеческом OA бедра [73].

Химически модифицированные тетрациклины

Было показано, что химически модифицированные тетрациклины, такие как доксициклин и миноциклин, непосредственно ингибируют активность протеаз и коллагеназ [74].Тетрациклины также могут косвенно подавлять эту катаболическую активность, поскольку, как сообщалось, они снижают уровни мРНК коллагеназ в изолированных хондроцитах ОА. Кроме того, доксициклин ингибировал увеличение мРНК этих ферментов в нормальных хондроцитах, стимулированных TNF-α [75]. Аналогичным образом, хондроциты, выделенные из хряща OA человека и обработанные доксициклином, показали значительное ингибирование белка матриксной металлопротеиназы и соответствующих уровней мРНК, что указывает на транскрипционный / посттранскрипционный уровень контроля.Кроме того, лечение доксициклином привело к значительному снижению уровня мРНК IL-1α, β и IL-6 [76].

Прямое ингибирование таких цитокинов могло быть ответственным за снижение активности синтазы оксида азота в синовиальных клетках ОА [77]. Тетрациклины обращали как спонтанную, так и индуцированную IL-1β активность NOS в ex vivo условиях в тканях OA человека. Было обнаружено, что механизм действия этих препаратов на экспрессию NOS, по крайней мере частично, находится на уровне экспрессии РНК и трансляции фермента [78].

Вероятно, что снижение активности коллагеназы и желатиназы в экстрактах хрящей остеоартрита человека после перорального введения этих тетрациклинов человеку [79], а также открытие, что доксициклин ингибирует продукцию NO в хряще у собак, у которых развился ОА после спонтанного разрыв передней крестообразной связки [80], возможно, был приписан ингибированию активности ауто / паракринных катаболических цитокинов. Скорее всего, это ингибирование каскадов катаболических цитокинов было ответственно за «хондропротекторные» эффекты при воспалительных артритах на животных моделях.Профилактические доксициклины и химически модифицированные варианты, вводимые перорально, снижали изменения ОА в коленных суставах in vivo у морских свинок Хартли, которые имеют высокую частоту ОА коленных суставов [81], и заметно снижали тяжесть ОА в областях, несущих нагрузку. медиального мыщелка бедренной кости при экспериментальном ОА у взрослых беспородных собак [82]. Совсем недавно было показано, что лечение доксициклином в дозе 100 мг два раза в день в течение 30 месяцев снижает скорость сужения суставной щели в коленях с установленным остеоартритом в группе женщин с ожирением [83].

диацетилреин

В отличие от других CTSMA, которые ингибируют NO [64, 69, 77, 78, 107, 110–113] и продукцию простаноидов [69, 108, 110–112, 114], активный метаболит диацетилреина, реин не снижает, но, по-видимому, стимулирует синтез простагландинов in vitro [84, 85] и in vivo [86]. Этот механизм действия диацетилреина по увеличению экспрессии циклооксигеназы (COX) -2 и продукции PGE 2 , независимо от их ингибирования эндогенного NO [85, 87], аналогичен таковому у тетрациклинов, например.грамм. доксициклин и миноциклин, которые ингибируют индуцибельную NO-синтазу и увеличивают экспрессию ЦОГ-2 [88, 89]. Rhein и тетрациклины являются родственными химическими структурами в том смысле, что эти соединения возникают в результате реакций замещения полиядерных углеводородов: антрацена и нафтацена соответственно. Реин и тетрациклины обладают структурным сходством (рис. 2).

Рис. 2.

Райн, активный метаболит диацетилреина, и тетрациклин обладают структурным сходством.

Рис. 2.

Райн, активный метаболит диацетилреина, и тетрациклин обладают структурным сходством.

Подобно тетрациклинам, диацетилреин / реин подавлял экспрессию ИЛ-1 в активированных липополисахаридами хондроцитах ОА человека [90] и синовиальных клетках [91]. Эксперименты на изолированных хондроцитах суставного хряща и на эксплантатах хрящевой ткани показали, что это нарушение высвобождения активного ИЛ-1 частично связано с ингибированием фермента, преобразующего ИЛ-1 (ICE) плазматической мембраны.Судя по отсутствию влияния на уровень экспрессии генов обоих белков, действие диацетилреина / реина на IL-1β и ICE должно было быть посттрансляционным [92]. Понижающая модуляция активной продукции IL-1 сопровождалась ингибированием активации NFκB [93] и, следовательно, экспрессии IL-1 / NFκB-зависимых генов в этих клетках [90, 91, 93]. Блокирующие нижестоящие события IL-1 включали снижение продукции NO, стромелизина-1 [91, 94] и коллагеназы, а также провоспалительных IL-6, -8 и -18 в IL-1α и TNF-α активированных монослойных культивируемых суставных хондроцитах человека из ОА суставов [92, 94].Аналогичным образом, реин подавлял индуцированную IL-1 экспрессию генов proMMP-1, -3, -9 и -13 и их активности, а также повышал продукцию тканевого ингибитора металлопротеиназы 1 (TIMP-1) в монослое культивированных суставные хондроциты кролика. Следовательно, в этих клетках сообщалось об увеличении выработки гликозаминогликанов и коллагена наряду со снижением деградации протеогликана [95–97]. Это улучшенное наращивание матрикса могло быть усилено увеличением экспрессии изоформ TGF-β в хондроцитах, обработанных диацетилреином [98].Все эти результатов in vitro были получены с концентрациями диацетилреина / реина, сравнимыми с терапевтическими уровнями в плазме. Можно разумно предположить, что блокирование ИЛ-1 диацетилреином / реином было ответственно за некоторые эффекты DMOAD, наблюдаемые при экспериментальном ОА у животных, например при ушибе индуцированного разрушения хряща надколенника кролика [99] и при спонтанно развивающемся полиартрите у мышей NZB / KN [100]. Хотя это не согласуется с улучшением биохимии суставного хряща [101–103], сравнимая хондрозащита наблюдалась в различных моделях ОА собак, если судить по макроскопическим повреждениям хряща [102, 103].

Эти эффекты DMOAD были подтверждены в двух рандомизированных двойных слепых плацебо-контролируемых исследованиях. Двести шестьдесят девять пациентов с первичным ОА бедра завершили трехлетнее исследование, получая диацетилреин в дозе 50 мг два раза в день или плацебо. Процент пациентов с рентгенологическим прогрессированием, определяемым как потеря суставной щели не менее 0,5 мм, был значительно ниже у пациентов, получавших диацетилреин, чем у пациентов, получавших плацебо. У этих пациентов частота сужения суставной щели была дискретной, но значительно ниже, чем в группе плацебо [104].Эти результаты были подтверждены в другом 1-летнем проспективном рандомизированном двойном слепом плацебо-контролируемом исследовании 301 пациента с радиологическим медиальным ОА коленного сустава [105].

Глюкозамин

Место глюкозамина как CTSMA или DMOAD остается спорным. Тот факт, что этот аминосахар долгое время назывался «сульфатом глюкозамина», вызвал путаницу. Препарат, использованный в ряде экспериментов in vitro и in vivo , не был сложным эфиром сульфата глюкозамина, а оказался препаратом, в котором глюкозамин и сульфат присутствовали в виде двух отдельных молекул в кристаллической форме.Если какие-либо эффекты CTSMA приписываются «сульфату глюкозамина», в настоящее время считается, что активным ингредиентом является моносахарид. В серии экспериментов с изолированными IL-1β-активированными хондроцитами в культуре, где использовались гексозамины, сообщалось о влиянии на последующие события IL-1. Добавление глюкозамина к хондроцитам крысы, обработанным IL-1β, уменьшало активацию фактора транскрипции NFκB, но не белка-активатора-1 [106]. Глюкозамин, но не N, -ацетилглюкозамин или другие моносахариды [107], значительно ингибировал активность NFκB в хондроцитах ОА человека, а также ядерную транслокацию белков p50 и p65 [108].Глюкозамин снижал активность фосфолипазы A2 [109], уровни мРНК и белка ЦОГ-2 [107, 108, 110] и высвобождение PGE 2 [108, 110–114] в клетках суставного хряща различного происхождения. Сходным образом аминосахар снижает продукцию iNOS и NO хондроцитами [107, 110–113] и индуцирует IL-1 металлопротеиназную и коллагеназную активности в супернатантах культур хондроцитов [109–113, 115]. Заметное ингибирование аггреканазозависимого расщепления аггрекана наблюдалось как с клетками крысы, так и с эксплантами крупного рогатого скота при добавлении глюкозамина [116] и маннозамина [117].Ингибирование не было связано с вмешательством в передачу сигналов IL-1, и точный механизм, с помощью которого гексозамины функционируют в этой системе, неясен. Вмешательство в активность ферментов привело к снижению катаболизма ВКМ в этих культурах хондроцитов [113]. Кроме того, сообщалось, что гексозамины улучшают синтез макромолекул ECM в IL-1-репрессированных хрящевых клетках [106, 111, 112, 115]. Большинство цитируемых экспериментов проводилось на нормальных хондроцитах, хондроцитах или хрящевых эксплантатах, примированных IL-1.Редко использовались нативные хондроциты ОА [109, 115]. Основная проблема с исследованиями in vitro , проведенными до сих пор, — это концентрации гексозаминов, используемых в этих экспериментах. Обычно пациентам с ОА ежедневно вводят 1500 мг глюкозамина (20 мг / кг у субъекта массой 75 кг). Эти предписанные количества в лучшем случае обеспечивают концентрацию гексозамина в плазме 0,15–0,30 мМ у среднестатистического европейца. Два из вышеупомянутых экспериментальных исследований были проведены с концентрациями глюкозамина в этом диапазоне [115, 117].Остальные были сделаны с использованием нефизиологических уровней глюкозамина в питательной среде в диапазоне от 0,56 до 139,66 мМ [106–113, 116], условий, в которых ингибирование катаболических эффектов, вызванных IL1β, могло быть связано с токсичностью глюкозамина [118].

Актуальность результатов in vitro , полученных с супрафизиологическими дозами глюкозамина, остается спорным, поскольку ежедневное введение ~ 20 мг / кг глюкозамина пероральным путем кроликам, у которых выполнялось перерезание передней крестообразной связки, имело только обнаруживаемый участок. -специфический, частичный модифицирующий болезнь эффект в этой модели ОА.Введение глюкозамина не предотвращало фибрилляцию и / или эрозию суставного хряща у обработанных животных [119]. Кроме того, парентеральное введение 200 мг / кг N-ацетил-глюкозамина на кроличьей модели экспериментального ОА коленного сустава не показало хондропротекторных эффектов [120]. Механизм действия, с помощью которого этот гексозамин, таким образом, мог повлиять на эволюцию одной человеческой популяции с ОА коленного сустава [121, 122], таким образом, еще предстоит выяснить. Принимая во внимание отсутствие хондрозащиты в экспериментальных животных моделях ОА, подтверждение хондропротекторных эффектов глюкозамина в человеческой популяции было бы ценным.

Кортикостероиды и ИЛ-1

Гомеостаз ВКМ клетками суставного хряща зависит от контроля ауто / паракринных катаболических каскадов, индуцированных ИЛ-1 [21]. Множество эндокринных гормонов и факторов роста способны контролировать эту активность IL-1. Классически сообщалось, что кортикостероиды напрямую влияют на синтез ИЛ-1 [123, 124]. Как показано на культурах хрящевых эксплантатов, кортикостероидные гормоны в физиологических дозах ингибируют деградацию внеклеточного матрикса [125–127].Это ингибирование пути IL-1 привело к снижению патологической активности нейтральных протеаз в хрящевой ткани [128–132]. Помимо того факта, что кортикостероиды действуют синергетически с различными основными факторами роста и дифференцировки, влияя на синтез основного вещества внеклеточного матрикса [133–135], антикатаболические эффекты кортикостероидов, по крайней мере, частично объясняют защитные эффекты на хрящ ОА однократного или периодического действия. местное или системное введение физиологических доз кортикостероидов в различных моделях экспериментально индуцированного ОА, таких как модель менискэктомированного кролика [136, 137], при химически индуцированном повреждении хряща у морской свинки [138] и в модели собаки Паунда-Нуки. ОА [132, 139].Подобные защитные эффекты этих препаратов наблюдались на хрящах остеоартрита у людей [131]. Это подавление IL-1 физиологическими дозами кортикостероидов вместе с повышающей регуляцией рецептора IGF-1 в конечном итоге привело к накоплению соединений ECM в непосредственном окружении хрящевых клеток in vitro [63, 140] .

Защита и регенерация суставного хряща с помощью блокаторов цитокинов: доказательство концепции

Совсем недавно были зарегистрированы драматические хондропротекторные эффекты у пациентов с РА и деструктивным артритом, ассоциированным со спондилоартропатией (СПА).У этих пациентов TNF-α, высвобождаемый в синовиальной мембране, запускает катаболический ауто / паракринный путь IL-1 хондроцитов в соседнем суставном хряще [141]. Результирующий каскад ауто / паракринного IL-1 будет вызывать разрушение внеклеточного матрикса суставного хряща. Лечение пациентов с РА рекомбинантными белками, поглощающими TNF-α, подавляет активность IL-1 хондроцитов и останавливает эрозивную прогрессию, продолжающуюся в течение этих воспалительных заболеваний [142]. Нейтрализация TNF-α при RA в конечном итоге приводит к очевидному восстановлению пораженных суставов [143].Повторное появление исчезнувшей суставной щели было зарегистрировано при периферическом артрите, связанном с СПА [144, 145] (рис. 3). Сходным образом при ОА ауто / паракринный TNF-α, возникающий в результате апоптоза хондроцитов [31–34] после чрезмерного механического стресса, вызывает индуцированное IL-1 разрушение внеклеточной среды суставного хряща. Насколько подобное блокирование TNF-α может привести к остановке прогрессирования этого заболевания, еще не изучено.

Рис.3.

Хондрозащита и регенерация суставного хряща блокаторами цитокинов. (A) Тазобедренный сустав пациента с анкилозирующим спондилитом до (слева) и после 1 года лечения инфликсимабом, блокирующим TNF-α моноклональным антителом. Прекращено развитие эрозии, вновь появилась суставная щель. (B) Такое же течение наблюдалось в третьем проксимальном межфаланговом суставе и втором дистальном межфаланговом суставе пациента, страдающего псориатическим артритом. Эти записи были получены после завершения серии проспективных рандомизированных плацебо-контролируемых исследований, одобренных местным комитетом по этике, в которые были включены 107 пациентов для изучения влияния инфликсимаба на клинические признаки спондилоартропатии [144]. , Ван дер Бош, представлен].Рентгеновские снимки пораженных суставов были сделаны при поступлении и через 1 год наблюдения. (C) При эрозивном ОА межфалангового сустава пальца подобный тип ремоделирования происходит спонтанно после прекращения деструктивного эпизода. Четыре рентгеновских снимка были сделаны с интервалом в 1 год [145].

Рис. 3.

Хондропротекция и регенерация суставного хряща цитокиноблокаторами. (A) Тазобедренный сустав пациента с анкилозирующим спондилитом до (слева) и после 1 года лечения инфликсимабом, блокирующим TNF-α моноклональным антителом.Прекращено развитие эрозии, вновь появилась суставная щель. (B) Такое же течение наблюдалось в третьем проксимальном межфаланговом суставе и втором дистальном межфаланговом суставе пациента, страдающего псориатическим артритом. Эти записи были получены после завершения серии проспективных рандомизированных плацебо-контролируемых исследований, одобренных местным комитетом по этике, в которые были включены 107 пациентов для изучения влияния инфликсимаба на клинические признаки спондилоартропатии [144]. , Ван дер Бош, представлен].Рентгеновские снимки пораженных суставов были сделаны при поступлении и через 1 год наблюдения. (C) При эрозивном ОА межфалангового сустава пальца подобный тип ремоделирования происходит спонтанно после прекращения деструктивного эпизода. Четыре рентгеновских снимка были сделаны с интервалом в 1 год [145].

Обсуждение

Идентичные пути цитокинов и факторов роста контролируют разрушение и восстановление при ОА и воспалительных заболеваниях суставов, таких как RA и SPA-ассоциированный артрит. Однонаправленные каскады цитокинов, управляемые TNF-α / IL-1, нарушают гомеостаз ECM суставного хряща при этих нарушениях.TNF-α, происходящий из синовиальной мембраны, запускает каскад во время воспалительных патологий, в то время как при ОА аутокринный TNF-α, высвобождаемый апоптозными клетками суставного хряща, вызывает активность IL-1. Как при воспалительных, так и при дегенеративных состояниях, каскады цитокинов, управляемые TNF-α / IL-1, преобладают над путями факторов роста, способствующих анаболической репарации. Однако, когда биологические препараты, блокирующие TNF-α, вводили при иммунологически опосредованных воспалительных артритах, безошибочно было продемонстрировано восстановление тканей.В СПА зафиксировано повторное появление ранее исчезнувшей суставной щели.

Точно так же репрессия каскадов цитокинов, управляемых TNF-α / IL-1, должна позволить репарации стать еще более очевидной при ОА, поскольку пути анаболического фактора роста также сверхэкспрессируются в этом состоянии. Было показано, что кортикостероиды, отдельные классы (поли) сульфатированных полисахаридов, тетрациклины, диацетилреин / реин, авокадо / соевые бобы и глюкозамин подавляют IL-1 и, по-видимому, подавляют нижестоящие характеристики IL-1, например.грамм. активность коллагеназы, протеогликаназы и ММП, экспрессия iNOS и повышенное высвобождение NO, а также выделение PGE 2 , IL-6 и IL-8. За исключением кортикостероидов и диацетилреина, эти агенты не продемонстрировали стимуляции активности фактора роста. Все эти CTSMA, способные напрямую влиять на синтез и высвобождение IL-1 in vitro , как было показано, обладают активностью DMOAD в экспериментальных моделях ОА и в популяциях людей с ОА коленных и пальцевых суставов.Эффекты DMOAD глюкозамина in vivo остаются несколько спорными, поскольку концентрации гексозаминов, которые были эффективны в экспериментах in vitro , никогда не были достигнуты при системном введении аминосахаров экспериментальным животным или людям. Фармакологическое усиление факторов, способствующих репарации, например Ожидается, что TGF-β и / или IGF-1 не сильно повлияют на изменение заболевания при ОА. Пути анаболического восстановления уже чрезмерно выражены при этом заболевании.Этим объясняется затяжной характер ОА и очевидные признаки ремоделирования тканей сустава ОА.

Поскольку однонаправленный каскад цитокинов, управляемый TNF-α / IL-1, был идентифицирован как лекарственная мишень при ОА, простые лабораторные процедуры позволят обнаружить новую серию CTSMA с активностями DMOAD.

Авторы заявили об отсутствии конфликта интересов.

Список литературы

1

Altman RD, Hochberg MC, Moskowitz RW, Schnitzer TJ.Рекомендации по медикаментозному лечению остеоартроза тазобедренного и коленного суставов. Обновление 2000 года. Подкомитет ACR по рекомендациям по остеоартриту.

Arthritis Rheum

2000

;

43

:

1905

–15,2

Chambers MG, Bayliss MT, Mason RM. Экспрессия цитокинов хондроцитов и факторов роста при остеоартрите мышей.

Тележка для лечения артроза

1997

;

5

:

301

–8.3

Моос В., Фикерт С., Мюллер Б., Вебер Ю., Сипер Дж.Иммуногистологический анализ экспрессии цитокинов при остеоартрите человека и здоровом хряще.

J Rheumatol

1999

;

26

:

870

–9,4

van Beuningen HM, van der Kraan PM, Arntz OJ, van den Berg WB. Защита от интерлейкина 1 индуцировала разрушение суставного хряща путем трансформации фактора роста бета: исследования на анатомически неповрежденном хряще in vitro и in vivo .

Ann Rheum Dis

1993

;

52

:

185

–91.5

Guenther HL, Guenther HE, Froesch ER, Fleisch H. Влияние инсулиноподобного фактора роста на синтез коллагена и гликозаминогликанов суставными хондроцитами кролика в культуре.

Experientia

1982

;

38

:

979

–81,6

McQuillan DL, Handley CJ, Campbell MA, Bolis S, Milway VE, Herington AC. Стимуляция синтеза протеогликана сывороткой и инсулиноподобным фактором роста-1 в культивируемом суставном хряще крупного рогатого скота.

Biochem J

1986

;

240

:

423

–30.7

Luyten FP, Hascall VC, Nissley SP, Morales TI, Reddi AH. Инсулиноподобные факторы роста поддерживают стабильный метаболизм протеогликанов в эксплантатах суставного хряща крупного рогатого скота.

Arch Biochem Biophys

1988

;

267

:

416

–25,8

Tesch GH, Handley CJ, Cornell HJ, Herington AC. Влияние свободных и связанных инсулиноподобных факторов роста на метаболизм протеогликанов в эксплантатах суставного хряща.

J Orthop Res

1992

;

10

:

14

–22.9

Verbruggen G, Malfait AM, Dewulf M, Broddelez C, Veys EM. Стандартизация питательных сред для изолированных суставных хондроцитов человека в гелеобразной суспензионной культуре агарозы.

Тележка для лечения артроза

1995

;

3

:

249

–59,10

Yaeger PC, Masi TL, de Ortiz JL, Binette F, Tubo R, McPherson JM. Синергетическое действие трансформирующего фактора роста-бета и инсулиноподобного фактора роста-I индуцирует экспрессию генов коллагена и аггрекана типа II в суставных хондроцитах взрослого человека.

Exp Cell Res

1997

;

237

:

318

–25,11

Verschure PJ, van Marle J, Joosten LA, van den Berg WB. Экспрессия хондроцитарного рецептора IGF-1 и реакция на стимуляцию IGF-1 в суставном хряще мыши во время различных фаз экспериментально индуцированного артрита.

Ann Rheum Dis

1995

;

54

:

645

–53,12

Саклатвала Дж., Пилсворт LMC, Сарсфилд С.Дж., Гравилович Дж., Хит Дж. К.. Катаболин свиньи — это форма интерлейкина 1.

Biochem J

1984

;

224

:

461

–6,13

Дингл Дж. Т., Саклатвала Дж., Хембри Р., Тайлер Дж., Фелл Х. Б., Джубб Р. Катаболический фактор хряща из синовиальной оболочки.

Biochem J

1979

;

184

:

177

–80,14

Dingle JT. Влияние синовиального катаболина на синтетическую активность хряща.

Connect Tiss Res

1984

;

12

:

277

–86,15

Тайлер Дж. А., Саклатвала Дж.Свиной ИЛ-1 (катаболин) вызывает резорбцию протеогликана хряща и предотвращает синтез протеогликана и коллагена.

Br J Rheumatol

1985

;

24 (Дополнение 1)

:

150

–5,16

Таскиран Д., Стефанович-Рачич М., Георгеску Х.И., Эванс Ч. Оксид азота опосредует подавление синтеза протеогликанов хряща интерлейкином-1.

Biochem Biophys Res Commun

1994

;

200

:

142

–8,17

Берд Т.А., Саклатвала Дж.Идентификация общего класса рецепторов с высоким сродством для обоих типов интерлейлина-1 на клетках соединительной ткани.

Nature

1986

;

324

:

263

–6,18

Чандрасекхар С., Харви А.К. Индукция рецепторов интерлейкина-1 на хондроцитах фактором роста фибробластов: возможный механизм модуляции активности интерлейкина-1.

J Cell Physiol

1989

;

138

:

236

–46,19

Colotta F, Re F, Muzio M et al .Рецептор интерлейкина-1 типа II: мишень-приманка для IL-1, которая регулируется IL-4.

Наука

1993

;

261

:

472

–5.20

Аттур М.Г., Дэйв М., Чиполлетта С. и др. . Обращение аутокринных и паракринных эффектов интерлейкина 1 (ИЛ-1) при артрите человека с помощью рецептора-ловушки ИЛ-1 типа II. Возможность фармакологического вмешательства.

J Biol Chem

2000

;

275

:

40307

–1521

Wang J, Elewaut D, Veys EM, Verbruggen G.Индуцированный инсулиноподобным фактором роста 1 рецептор интерлейкина-1 II подавляет активность интерлейкина-1 и контролирует гомеостаз внеклеточного матрикса хряща.

Arthritis Rheum

2003

;

48

:

1281

–91,22

Тайлер Дж.А. Инсулиноподобный фактор роста 1 может уменьшать деградацию и способствовать синтезу протеогликана в хряще, подвергающемся действию цитокинов.

Biochem J

1989

;

260

:

543

–8.23

Миддлтон Дж. Ф., Тайлер Дж. А. Повышение экспрессии гена инсулиноподобного фактора роста I в поражениях суставного хряща человека при остеоартрите.

Ann Rheum Dis

1992

;

51

:

440

–7,24

Миддлтон Дж., Манти А., Тайлер Дж. Рецептор инсулиноподобного фактора роста (ИФР), ИФР-I, интерлейкин-1 бета (ИЛ-1 бета) и экспрессия мРНК ИЛ-6 при остеоартрите и нормальном хряще человека.

J Histochem Cytochem

1996

;

44

:

133

–41.25

Verschure PJ, Marle JV, Joosten LA, Helsen MM, Lafeber FP, Berg WB. Локализация рецептора инсулиноподобного фактора роста-1 в нормальном и остеоартрозном хрящах человека в отношении синтеза и содержания протеогликана.

Br J Rheumatol

1996

;

35

:

1044

–55,26

Ван Дж., Вердонк П., Элеваут Д., Вейс Е.М., Вербрюгген Г. Гомеостаз внеклеточного матрикса нормальных и остеоартрозных хондроцитов суставного хряща человека in vitro.

Тележка для лечения артроза

2003

;

11

:

801

–9.27

Шлопов Б.В., Гумановская М.Л., Поспешный К.А. Аутокринная регуляция коллагеназы 3 (матриксная металлопротеиназа 13) при остеоартрите.

Arthritis Rheum

2000

;

43

:

195

–205.28

Pelletier JP, Martel-Pelletier J, Howell DS, Ghandur-Mnaymneh L, Enis JE, Woessner JF Jr. Коллагеназа и коллагенолитическая активность в остеоартритическом хряще человека.

Arthritis Rheum

1983

;

26

:

63

–8.29

Okada Y, Shinmei M, Tanaka O et al .Локализация матриксной металлопротеиназы 3 (стромелизина) в остеоартрозном хряще и синовиальной оболочке.

Lab Invest

1992

;

66

:

680

–90,30

Arner EC, Tortorella MD. Передача сигнала через рецепторы интегрина хондроцитов индуцирует синтез металлопротеиназы матрикса и действует синергично с интерлейкином-1.

Arthritis Rheum

1995

;

38

:

1304

–14,31

Орландо С., Сирони М., Бьянки Г. и др. .Роль металлопротеаз в высвобождении рецептора-ловушки IL-1 типа II.

J Biol Chem

1997

;

272

:

31764

–9,32

Penton-Rol G, Orlando S, Polentarutti N et al . Бактериальный липополисахарид вызывает быстрое выделение с последующим ингибированием экспрессии мРНК рецептора IL-1 типа II с сопутствующей активацией рецептора типа I и индукцией не полностью сплайсированных транскриптов.

J Immunol

1999

;

162

:

2931

–8.33

D’Lima DD, Hashimoto S, Chen PC, Colwell CW Jr, Lotz MK. Апоптоз хондроцитов человека в ответ на механическое повреждение.

Тележка для лечения артроза

2001

;

9

:

712

–9,34

Редман С.Н., Даутуэйт Г.П., Томсон Б.М., Арчер CW. Клеточные реакции суставного хряща на резкую и тупую травму.

Тележка для лечения артроза

2004

;

12

:

106

–16.35

Айзава Т., Кон Т., Эйнхорн Т.А., Герстенфельд Л.С.Индукция апоптоза хондроцитов фактором некроза опухоли-α.

J Orthop Res

2001

;

19

:

785

–96,36

Islam N, Haqqi TM, Jepsen KJ et al . Гидростатическое давление индуцирует апоптоз в хондроцитах человека из остеоартрозного хряща за счет усиления фактора некроза опухоли-α, индуцибельной синтазы оксида азота, p53, c-myc и bax-alpha, а также подавления bcl-2.

J Cell Biochem

2002

;

87

:

266

–78.37

Моос В., Фикерт С., Мюллер Б., Вебер Ю., Сипер Дж. Иммуногистологический анализ экспрессии цитокинов в человеческом остеоартрите и здоровом хряще.

J Rheumatol

1999

;

26

:

870

–9.38

Verdier MP, Seite S, Guntzer K, Pujol JP, Boumediene K. Иммуногистохимический анализ бета-изоформ трансформирующего фактора роста и их рецепторов в хряще человека из нормальных и остеоартрозных головок бедренной кости.

Rheumatol Int

2005

;

25

:

118

–24.39

Четина Е.В., Сквайрс Дж., Пул А.Р. Усиленная деградация коллагена II типа и очень ранняя очаговая дегенерация хряща связаны с активацией генов, связанных с дифференцировкой хондроцитов, в ранних поражениях суставного хряща человека.

J Ревматол

2005

;

32

:

876

–86,40

Harvey AK, Hrubey PS, Chandrasekhar S. Ингибирование активности интерлейкина-1 трансформирующим фактором роста бета включает подавление рецепторов интерлейкина-1 на хондроцитах.

Exp Cell Res

1991

;

195

:

376

–85.41

Эйлау О. Внутрисуставная гепариновая терапия истинного деформирующего артроза коленного сустава.

Мед Клин

1959

;

54

:

145

.42

Эйлау О. О патогенезе и причинном лечении артроза коленного сустава.

Мед Клин

1960

;

55

:

2367

–70,43

Momburg M, Stuhlsatz HW, Vogeli H, Vojtisek O, Eylau O, Greiling H.Клинические химические изменения в синовиальной жидкости после внутрисуставной инъекции полисульфата гликозаминогликана.

Z Rheumatol

1976

;

35 (Приложение 4)

:

389

–90,44

Нево З., Хорвиц А.Л., Дорфман А. Синтез хондромукопротеина хондроцитами в суспензионной культуре.

Дев Биол

1972

;

28

:

219

–28,45

Нево З., Дорфман А. Стимуляция синтеза хондромукопротеина в хондроцитах внеклеточным хондромукопротеином.

Proc Natl Acad Sci USA

1972

;

69

:

2069

–72,46

Kosher RA, Lash JW, Minor RR. Экологическое усиление хондрогенеза in vitro.

Дев Биол

1973

;

35

:

210

–20,47

Шварц Н.Б., Дорфман А. Стимуляция продукции хондроитинсульфат-протеогликана хондроцитами в монослое.

Conn Tiss Res

1975

;

3

:

115

–22,48

Verbruggen G, Veys EM.Влияние сульфатированных гликозаминогликанов на метаболизм протеогликанов в клетках синовиальной оболочки.

Acta Rheumatol

1977

;

1

:

75

–92,49

Verbruggen G, Veys EM. Влияние гиперсульфатированного гепариноида на метаболизм гиалуроната синовиальной клетки человека in vivo .

J Rheumatol

1979

;

6

:

554

–61,50

Kalbhen DA. Экспериментальное подтверждение противоартритной активности полисульфата гликозаминогликана.

Z Ревматол

1983

;

42

:

178

–84,51

Carreno MR, Muniz OE, Howell DS. Эффект гликозаминогликана сложного эфира полисерной кислоты на суставной хрящ при экспериментальном остеоартрите: влияние на морфологические переменные тяжести заболевания.

J Rheumatol

1986

;

13

:

490

–7,52

Бреннан Дж. Дж., Ахерн FX, Накано Т. Влияние лечения полисульфатом гликозаминогликана на прочность, содержание гиалуроновой кислоты в синовиальной жидкости и протеогликановый агрегат в суставном хряще хромых хряков.

Can J Vet Res

1987

;

51

:

394

–8,53

Убельхарт Д., Тонар Э. Дж., Чжан Дж., Уильямс Дж. М.. Защитный эффект экзогенного хондроитин-4,6-сульфата при острой деградации суставного хряща у кролика.

Тележка для лечения артроза

1998

;

6 (Дополнение A)

:

6

–13,54

Verbruggen G, Goemaere S, Veys EM. Хондроитинсульфат: S / DMOAD (лекарственное средство против остеоартрита, изменяющее структуру / заболевание) при лечении остеоартрита суставов пальцев.

Тележка для лечения артроза

1998

;

6 (Дополнение A)

:

37

–8,55

Verbruggen G, Goemaere S, Veys EM. Системы для оценки прогрессирования остеоартрита суставов пальцев и эффектов лекарств, влияющих на лечение остеоартрита.

Clin Rheumatol

2002

;

21

:

231

–43,56

Убельхарт Д., Тонар Э. Дж., Дельмас П. Д., Шантрейн А., Виньон Э. Влияние перорального хондроитинсульфата на прогрессирование остеоартрита коленного сустава: пилотное исследование.

Тележка для лечения артроза

1998

;

6 (Дополнение A)

:

39

–46,57

Убельхарт Д., Малез М., Марколонго Р. и др. . Прерывистое лечение остеоартрита коленного сустава пероральным хондроитинсульфатом: однолетнее рандомизированное двойное слепое многоцентровое исследование по сравнению с плацебо.

Тележка для лечения артроза

2004

;

12

:

269

–76,58

Мишель Б.А., Штуки Г., Фрей Д. и др. . Хондроитины 4 и 6 сульфат при остеоартрозе коленного сустава: рандомизированное контролируемое исследование.

Arthritis Rheum

2005

;

52

:

779

–86,59

Verbruggen G, Veys EM. Внутрисуставная инъекция пентозанполисульфата приводит к увеличению молекулярной массы гиалуронана в суставной жидкости.

Clin Exp Rheumatol

1992

;

10

:

249

–54,60

Francis DJ, Hutadilok N, Kongtawelert P, Ghosh P. Полисульфат пентозана и полисульфат гликозаминогликана стимулируют синтез гиалуронана in vivo .

Rheumatol Int

1993

;

13

:

61

–4,61

Verbruggen G, Cornelissen M, Elewaut D, Broddelez C., De Ridder L., Veys EM. Влияние полисульфатированных полисахаридов на аггреканы, синтезируемые дифференцированными суставными хондроцитами человека.

J Rheumatol

1999

;

26

:

1663

–71,62

Sadowski T., Steinmeyer J. Влияние полисульфатированного гликозаминогликана и триамцинолона ацетонида на продукцию протеиназ и их ингибиторов обработанными IL-1alpha суставными хондроцитами.

Biochem Pharmacol

2002

;

64

:

217

–27.63

Ван Л., Ван Дж., Альмквист К.Ф., Вейс Е.М., Вербругген Г. Влияние полисульфатированных полисахаридов и гидрокортизона на метаболизм внеклеточного матрикса суставных хондроцитов человека in vitro.

Clin Exp Rheumatol

2002

;

20

:

669

–76,64

Tung JT, Venta PJ, Caron JP. Индуцируемая экспрессия оксида азота в суставных хондроцитах лошади: эффекты противовоспалительных соединений.

Тележка для лечения артроза

2002

;

10

:

5

–12,65

Verdonk P, Wang J, Elewaut D, Broddelez C, Veys EM, Verbruggen G. Полисульфаты циклодекстрина усиливают восстановление внеклеточного матрикса хондроцитов человека.

Тележка для лечения артроза

2005

;

13

:

887

–95.66

Muller W., Panse P, Brand S, Staubli A. Исследование in vivo распределения, сродства к хрящам и метаболизма полисульфата гликозаминогликана (GAGPS, Arteparon).

Z Ревматол

1983

;

42

:

355

–61.67

Volpi N. Пероральное всасывание и биодоступность хондроитинсульфата ихтикового происхождения у здоровых добровольцев мужского пола.

Тележка для лечения артроза

2003

;

11

:

433

–41,68

Volpi N. Биодоступность хондроитинсульфата (Кондросульф) и его компонентов при пероральном введении у здоровых добровольцев мужского пола.

Тележка для лечения артроза

2002

;

10

:

768

–77.69

Хенротин Ю.Е., Санчес С., Деберг М.А. и др. . Неомыляемые вещества авокадо / соевые бобы увеличивают синтез аггрекана и снижают выработку катаболических и провоспалительных медиаторов хондроцитами человека при остеоартрите.

J Ревматол

2003

;

30

:

1825

–34,70

Kut-Lasserre C, Miller CC, Ejeil AL et al . Влияние неомыляемых веществ авокадо и сои на желатиназу A (MMP-2), стромелизин 1 (MMP-3) и тканевые ингибиторы секреции матриксной металлопротеиназы (TIMP-1 и TIMP-2) фибробластами человека в культуре.

J Periodontol

2001

;

72

:

1685

–94,71

Хайял MT, Эль-Газали, Массачусетс. Возможный «хондрозащитный» эффект неомыляемых компонентов авокадо и сои in vivo .

Drugs Exp Clin Res

1998

;

24

:

41

–50.72

Cake MA, Read RA, Guillou B., Ghosh P. Модификация патологии суставного хряща и субхондральной кости в модели остеоартрита менискэктомии у овец неомыляемыми веществами авокадо и сои (ASU).

Тележка для лечения артроза

2000

;

8

:

404

–11.73

Lequesne M, Maheu E, Cadet C, Dreiser RL. Структурное влияние неомыляемых веществ авокадо / сои на потерю суставной щели при остеоартрозе тазобедренного сустава.

Arthritis Rheum

2002

;

47

:

50

–8,74

Yu LP Jr, Smith GN Jr, Hasty KA, Brandt KD. Доксициклин подавляет коллагенолитическую активность XI типа экстрактов из хрящей остеоартрита человека и желатиназы.

J Rheumatol

1991

;

18

:

1450

–2,75

Шлопов Б.В., Смит Г.Н. мл., Коул А.А., Хэсти К.А. Дифференциальные паттерны ответа на доксициклин и трансформирующий фактор роста бета1 при подавлении коллагеназ в остеоартрите и нормальных хондроцитах человека.

Arthritis Rheum

1999

;

42

:

719

–27,76

Шлопов Б.В., Стюарт Ю.М., Гумановская М.Л., Спешка К.А. Регулирование коллагеназы хряща доксициклином.

J Ревматол

2001

;

28

:

835

–42,77

Borderie D, Hernvann A, Hilliquin P, Lemarchal H, Kahan A, Ekindjian OG. Тетрациклины подавляют выработку нитрозотиола цитокин-стимулированными синовиальными клетками остеоартрита.

Inflamm Res

2001

;

50

:

409

–14,78

Amin AR, Attur MG, Thakker GD et al . Новый механизм действия тетрациклинов: эффекты на синтазы оксида азота.

Proc Natl Acad Sci USA

1996

;

93

:

14014

–9,79

Smith GN Jr, Yu LP Jr, Brandt KD, Capello WN. Пероральный прием доксициклина снижает активность коллагеназы и желатиназы в экстрактах остеоартрозного хряща человека.

J Rheumatol

1998

;

25

:

532

–5,80

Jauernig S, Schweighauser A, Reist M, Von Rechenberg B., Schawalder P, Spreng D. Влияние доксициклина на выработку оксида азота и стромелизина у собак с разрывом черепной крестообразной связки.

Вет Сург

2001

;

30

:

132

–9,81

де Бри Э, Лей В., Свенссон О., Чоудхури М., Моак С.А., Гринвальд Р.А. Влияние ингибитора матриксных металлопротеиназ на спонтанный остеоартрит у морских свинок.

Adv Dent Res

1998

;

12

:

82

–5,82

Ю Л.П. младший, Смит Г.Н. мл., Брандт К.Д., Майерс С.Л., О’Коннор Б.Л., Брандт Д.А. Уменьшение тяжести остеоартроза собак путем профилактического лечения пероральным доксициклином.

Arthritis Rheum

1992

;

35

:

1150

–9,83

Brandt KD, Mazzuca SA, Katz BP et al . Влияние доксициклина на прогрессирование остеоартрита: результаты рандомизированного плацебо-контролируемого двойного слепого исследования.

Arthritis Rheum

2005

;

52

:

2015

–25,84

Franchi-Micheli S, Lavacchi L, Friedmann CA, Ziletti L. Влияние реина на простагландиноподобные вещества in vitro .

J Pharm Pharmacol

1983

;

35

:

262

–4,85

Pomarelli P, Berti M, Gatti MT, Mosconi P. Нестероидный противовоспалительный препарат, который стимулирует высвобождение простагландинов.

Farmaco Ed Sci

1980

;

35

:

836

–42,86

Pelletier JP, Mineau F, Fernandes JC, Duval N, Martel-Pelletier J. Диацерхеин и реин снижают уровень и активность индуцибельного синтеза оксида азота, стимулированные интерлейкином 1beta, одновременно стимулируя синтез циклооксигеназы-2 у человека. остеоартрозные хондроциты.

J Rheumatol

1998

;

25

:

2417

–24,87

Тамура Т., Омори К. Диацереин подавляет увеличение оксида азота в плазме при артрите, индуцированном адъювантом у крыс.

евро J Pharmacol

2001

;

419

:

269

–74,88

Attur MG, Patel RN, Patel PD, Abramson SB, Amin AR. Тетрациклин усиливает экспрессию ЦОГ-2 и продукцию простагландина E 2 независимо от его воздействия на оксид азота.

J Immunol

1999

;

162

:

3160

–7.89

Патель Р.Н., Аттур М.Г., Дэйв М.Н. и др. . Новый механизм действия химически модифицированных тетрациклинов: ингибирование производства простагландина E2, опосредованного ЦОГ-2.

Иммунология

1999

;

163

:

3459

–67,90

Ярон М., Ширази И., Ярон И. Анти-интерлейкин-1 эффекты диацереина и реина в синовиальной ткани и культурах хрящей человека при остеоартрите.

Тележка для лечения артроза

1999

;

7

:

272

–80.91

Martel-Pelletier J, Mineau F, Jolicoeur FC, Cloutier JM, Pelletier JP. In vitro эффекты диацереина и реина на системы интерлейкина 1 и фактора некроза опухоли альфа в синовиальной оболочке и хондроцитах человека при остеоартрите.

J Rheumatol

1998

;

25

:

753

–62.92

Moldovan F, Pelletier JP, Jolicoeur FC, Cloutier JM, Martel-Pelletier J. Diacerhein и rhein снижают индуцированную ICE активацию IL-1beta и IL-18 в остеоартритическом хряще человека.

Тележка для лечения артроза

2000

;

8

:

186

–96,93

Мендес А.Ф., Карамона М.М., де Карвалью А.О., Лопес М.С. Диацереин и реин предотвращают индуцированную интерлейкином-1бета активацию ядерного фактора каппаВ, ингибируя деградацию ингибитора каппаВ-альфа.

Pharmacol Toxicol

2002

;

91

:

22

–8.94

Дозин Б., Мальпели М., Камарделла Л., Канседда Р., Пьетранджело А. Ответ молодых, пожилых и остеоартрозных суставных хондроцитов человека на воспалительные цитокины: молекулярные и клеточные аспекты.

Матрикс Биол

2002

;

21

:

449

–59,95

Boittin N, Redini F, Loyau G, Pujol JP. Влияние диацереина (ART 50) на синтез матрикса и секрецию коллагеназы культивированными хондроцитами суставов кроликов.

Rev Rhum

1993

;

60

:

68S

–76S.96

Tamura T., Kosaka N, Ishiwa J, Sato T, Nagase H, Ito A. Rhein, активный метаболит диацереина, подавляет продукцию проматричных металлопротеиназ-1 , -3, -9 и -13 и повышают продукцию тканевого ингибитора металлопротеиназы-1 в культивируемых суставных хондроцитах кролика.

Тележка для лечения артроза

2001

;

9

:

257

–63.97

Тамура Т., Омори К. Рейн, активный метаболит диацереина, подавляет индуцированную интерлейкином-1альфа деградацию протеогликана в культивируемых суставных хондроцитах кролика.

Jpn J Pharmacol

2001

;

85

:

101

–4,98

Фелисаз Н., Бумедьен К., Гайор С. и др. . Стимулирующее действие диацереина на экспрессию TGF-beta1 и beta2 в суставных хондроцитах, культивируемых с интерлейкином-1 и без него.

Тележка для лечения артроза

1999

;

7

:

255

–64,99

Mazieres B, Berdah L, Thiechart M, Viguier G. Diacetylrhein на постконтузионной модели экспериментального остеоартрита у кролика.

Rev Rhum

1993

;

60

:

77S

–81S.100

Тамура Т., Омори К., Накамура К. Влияние диацереина на спонтанный полиартрит у самцов новозеландских черных мышей / KN.

Тележка для лечения артроза

1999

;

7

:

533

–8.101

Carney SL. Влияние диацетилреина на развитие экспериментального остеоартроза. Биохимическое исследование.

Тележка для лечения артроза

1996

;

4

:

251

–61.102

Брандт К.Д., Смит Дж., Канг С.И., Майерс С., О’Коннор Б., Альбрехт Н. Эффекты диацереина в ускоренной модели остеоартрита у собак.

Тележка для лечения артроза

1997

;

5

:

438

–49.103

Смит Г. Н. мл., Майерс С. Л., Брандт К. Д., Миклер Э. А., Альбрехт М.Э.Лечение диацереином снижает тяжесть остеоартрита в модели остеоартрита с дефицитом крестообразных связок у собак.

Arthritis Rheum

1999

;

42

:

545

–54.104

Дугадос М., Нгуен М., Бердах Л., Мазьер Б., Лекесн М.; Исследовательская группа ECHODIAH. Оценка структурно-модифицирующих эффектов диацереина при остеоартрите тазобедренного сустава: ECHODIAH, трехлетнее плацебо-контролируемое исследование. Оценка хондромодулирующего эффекта диацереина при ОА бедра.

Arthritis Rheum

2001

;

44

:

2539

–47.105

Pham T, Le Henanff A, Ravaud P, Dieppe P, Paolozzi L., Dougados M. Оценка симптоматической и структурной эффективности нового соединения гиалуроновой кислоты, NRD101, по сравнению с диацереином и плацебо в 1-летнем рандомизированном контролируемом исследовании симптоматического остеоартрита коленного сустава.

Ann Rheum Dis

2004

;

63

:

1611

–7.106

Gouze JN, Bianchi A, Becuwe P et al .Глюкозамин модулирует индуцированную IL-1 активацию хондроцитов крысы на уровне рецепторов и путем ингибирования пути NF-каппа B.

FEBS Lett

2002

;

510

:

166

–70.107

Shikhman AR, Kuhn K, Alaaeddine N, Lotz M. N-ацетилглюкозамин предотвращает опосредованную IL-1 бета активацию хондроцитов человека.

J Immunol

2001

;

166

:

5155

–60.108

Largo R, Alvarez-Soria MA, Diez-Ortego I et al .Глюкозамин ингибирует индуцированную IL-1beta активацию NFkappaB в хондроцитах человека, страдающих остеоартритом.

Тележка для лечения артроза

2003

;

11

:

290

–8.109

Piperno M, Reboul P, Hellio Le Graverand MP et al . Сульфат глюкозамина модулирует дисрегулируемую активность хондроцитов человека, страдающих остеоартритом, in vitro .

Тележка для лечения артроза

2000

;

8

:

207

–12.110

Накамура Х., Шибакава А., Танака М., Като Т., Нисиока К.Влияние гидрохлорида глюкозамина на продукцию простагландина E2, оксида азота и металлопротеаз хондроцитами и синовиоцитами при остеоартрите.

Clin Exp Rheumatol

2004

;

22

:

293

–9.111

Gouze JN, Bordji K, Gulberti S et al . Интерлейкин-1beta подавляет экспрессию глюкуронозилтрансферазы I, ключевого фермента, запускающего биосинтез гликозаминогликанов: влияние глюкозамина на опосредованные интерлейкином-1beta эффекты в хондроцитах крыс.

Arthritis Rheum

2001

;

44

:

351

–60.112

Fenton JI, Chlebek-Brown KA, Caron JP, Orth MW. Влияние глюкозамина на интерлейкин-1 суставной хрящ.

Equine Vet J Suppl

2002

;

34

:

219

–23.113

Fenton JI, Chlebek-Brown KA, Peters TL, Caron JP, Orth MW. Глюкозамин HCl снижает деградацию суставного хряща лошади в культуре эксплантата.

Тележка для лечения артроза

2000

;

8

:

258

–65.114

Tung JT, Venta PJ, Eberhart SW, Yuzbasiyan-Gurkan V, Alexander L, Caron JP. Влияние препаратов против артрита на экспрессию генов и ферментативную активность циклооксигеназы-2 в культивируемых хондроцитах лошадей.

Am J Vet Res

2002

;

63

:

1134

–9.115

Dodge GR, Jimenez SA. Сульфат глюкозамина регулирует уровни аггрекана и матриксной металлопротеиназы-3, синтезируемые культивированными суставными хондроцитами человека, страдающими остеоартритом.

Тележка для лечения артроза

2003

;

11

:

424

–32.116

Sandy JD, Gamett D, Thompson V, Verscharen C. Опосредованный хондроцитами катаболизм аггрекана: аггреканазозависимое расщепление, индуцированное интерлейкином-1 или ретиноевой кислотой, может ингибироваться глюкозамином.

Biochem J

1998

;

335

:

59

–66.117

Патвари П., Курц Б., Сэнди Д.Д., Гродзинский А.Дж. Маннозамин подавляет опосредованные агреканазой изменения физических свойств и биохимического состава суставного хряща.

Arch Biochem Biophys

2000

;

374

:

79

–85.118

де Маттей М., Пеллати А., Паселло М. и др. . Высокие дозы глюкозамина-HCl оказывают пагубное воздействие на эксплантаты суставного хряща крупного рогатого скота, культивируемые in vitro .

Тележка для лечения артроза

2002

;

10

:

816

–25.119

Tiraloche G, Girard C, Chouinard L et al . Влияние перорального глюкозамина на деградацию хряща на кроличьей модели остеоартрита.

Arthritis Rheum

2005

;

52

:

1118

–28.120

Шихман А.Р., Амиэль Д., Д’Лима Д. и др. . Хондропротекторная активность N-ацетилглюкозамина у кроликов с экспериментальным остеоартрозом.

Ann Rheum Dis

2005

;

64

:

89

–94.121

Reginster JY, Deroisy R, Rovati LC et al . Долгосрочные эффекты сульфата глюкозамина на прогрессирование остеоартрита: рандомизированное плацебо-контролируемое клиническое исследование.

Ланцет

2001

;

357

:

251

–6.122

Pavelka K, Gatterova J, Olejarova M, Machacek S, Giacovelli G, Rovati LC. Использование сульфата глюкозамина и замедление прогрессирования остеоартрита коленного сустава: трехлетнее рандомизированное плацебо-контролируемое двойное слепое исследование.

Arch Intern Med

2002

;

162

:

2113

–23.123

Knudsen PJ, Dinarello CA, Strom TB. Глюкокортикоиды подавляют транскрипционную и посттранскрипционную экспрессию интерлейкина 1 в клетках U937.

J Immunol

1987

;

139

:

4129

–34.124

Ли С.В., Цоу А.П., Чан Х. и др. . Глюкокортикоиды избирательно подавляют транскрипцию гена интерлейкина 1 бета и снижают стабильность мРНК интерлейкина 1 бета.

Proc Natl Acad Sci USA

1988

;

85

:

1204

–8.125

Pelletier JP, Cloutier JM, Martel-Pelletier J. Влияние тиапрофеновой кислоты, салицилата натрия и гидрокортизона in vitro на метаболизм протеогликанов остеоартрозного хряща человека.

J Rheumatol

1989

;

16

:

646

–55,126

Hill DJ. Влияние кортизола на пролиферацию клеток, синтез и деградацию протеогликанов в хрящевых зонах реберно-хрящевой пластины роста теленка in vitro с активностью соматомедина плазмы крысы и без нее.

J Endocrinol

1981

;

88

:

425

–35,127

Такигава М., Такано Т., Накагава К., Сакуда М., Судзуки Ф. Стимуляция пролиферации гидрокортизоном и синтеза гликозаминогликанов в черепно-лицевых хондроцитах кролика in vitro .

Arch Oral Biol

1988

;

33

:

893

–9,128

Макгуайр М.Б., Мерфи М., Рейнольдс Дж. Дж., Рассел Р.Г.Г. Производство коллагеназы и ингибитора (ТИМП) нормальной, ревматоидной и остеоартритической синовиальной оболочкой in vitro : эффекты гидрокортизона и индометацина.

Clin Biol

1981

;

61

:

703

–10.129

Пеллетье Дж. П., Мартель-Пеллетье Дж. Деградация хряща нейтральными протеогликаназами при экспериментальном остеоартрите.

Подавление стероидами. Arthritis Rheum

1985

;

28

:

1393

–401.130

Martel-Pelletier J, Cloutier JM, Pelletier JP. Нейтральные протеазы синовиальной оболочки при остеоартрите человека.

Arthritis Rheum

1986

;

29

:

1112

–21.131

Pelletier JP, Martel-Pelletier J, Cloutier JM, Woessner JF Jr. Активность кислой металлопротеиназы, разрушающей протеогликаны, в хрящах остеоартрита человека и эффекты внутрисуставных инъекций стероидов.

Arthritis Rheum

1987

;

30

:

541

–8.132

Pelletier JP, Mineau F, Raynauld JP, Woessner JF, Gunja-Smith Z, Martel-Pelletier J. Внутрисуставные инъекции метилпреднизолона ацетата уменьшают остеоартритические поражения параллельно с синтезом хондроцитарного стромелизина.

Arthritis Rheum

1994

;

37

:

414

–23.133

Itagane Y, Inada H, Fujita K, Isshiki G.Взаимодействие между стероидными гормонами и инсулиноподобным фактором роста-I в хондроцитах кролика.

Эндокринология

1991

;

128

:

1419

–24.134

Van der Kraan PM, Vitters EL, Postma NS, Verbunt J, van den Berg WB. Поддержание синтеза крупных протеогликанов в анатомически неповрежденном суставном хряще мыши с помощью стероидов и инсулиноподобного фактора роста I.

Ann Rheum Dis

1993

;

52

:

734

–41.135

Van Osch GJ, van der Veen SW, Verwoerd-Verhoef HL. In vitro повторная дифференцировка выращенных в культуре кроличьих и человеческих аурикулярных хондроцитов для реконструкции хряща.

Plast Reconstr Surg

2001

;

107

:

433

–40,136

Коломбо С., Батлер М., Хикман Л., Селвин М., Диаграмма J, Стейнец Б. Новая модель остеоартрита у кроликов. II. Оценка антиостеоартрозных эффектов выбранных противоревматических препаратов, применяемых системно.

Arthritis Rheum

1983

;

26

:

1132

–9.137

Батлер М., Коломбо С., Хикман Л. и др. . Новая модель остеоартроза у кроликов. III. Оценка антиостеоартрозных эффектов выбранных препаратов, вводимых внутрисуставно.

Arthritis Rheum

1983

;

26

:

1380

–6,138

Williams JM, Brandt KD. Гексацетонид триамцинолона защищает от фибрилляции и образования остеофитов после химически индуцированного повреждения суставного хряща.

Arthritis Rheum

1985

;

28

:

1267

–74.139

Пеллетье Дж. П., Мартель-Пеллетье Дж. Защитные эффекты кортикостероидов на повреждения хряща и образование остеофитов в модели остеоартрита у собак Понд-Нуки.

Arthritis Rheum

1989

;

32

:

181

–93.140

Wang J, Elewaut D, Hoffman I., Veys EM, Verbruggen G. Физиологические уровни гидрокортизона поддерживают оптимальный метаболизм внеклеточного матрикса хондроцитов.

Ann Rheum Dis

2004

;

63

:

61

–6.141

Бреннан Ф.М., Чантри Д., Джексон А., Майни Р., Фельдманн М. Ингибирующее действие антител ФНО-альфа на выработку интерлейкина-1 синовиальными клетками при ревматоидном артрите.

Ланцет

1989

;

2

:

244

–7.142

Lipsky PE, van der Heijde DM, St Clair EW et al . Инфликсимаб и метотрексат в лечении ревматоидного артрита.

Исследовательская группа по исследованию противоопухолевого фактора некроза при ревматоидном артрите с сопутствующей терапией.N Engl J Med

2000

;

343

:

1594

–602.143

Смолен Дж. С., Хан С., Бала М. и др. .; Исследовательская группа ATTRACT. Доказательства радиографической пользы лечения инфликсимабом плюс метотрексат у пациентов с ревматоидным артритом, у которых не было клинического улучшения: подробный субанализ данных исследования противоопухолевого фактора некроза при ревматоидном артрите с исследованием сопутствующей терапии.

Arthritis Rheum

2005

;

52

:

1020

–30.144

Круитхоф Э., Ван ден Бош Ф., Баетен Д. и др. . Повторные инфузии инфликсимаба, химерного моноклонального антитела против TNFalpha, пациентам с активной спондилоартропатией: наблюдение в течение одного года.

Ann Rheum Dis

2002

;

61

:

207

–12.145

Verbruggen G, Veys EM. Системы числовой оценки анатомической эволюции остеоартроза суставов пальцев.

Arthritis Rheum

1996

;

39

:

308

–20.

© Автор 2005. Опубликовано Oxford University Press от имени Британского общества ревматологов. Все права защищены. Для получения разрешений обращайтесь по электронной почте: [email protected]

.

Хондропротекторы при дегенеративных заболеваниях суставов | Ревматология

Аннотация

Катаболические пути цитокинов и анаболических факторов роста контролируют разрушение и восстановление при остеоартрите (ОА).Однонаправленный каскад цитокинов, управляемый TNF-α / IL-1, нарушает гомеостаз внеклеточного матрикса суставного хряща при ОА. Хотя хондроциты в хряще OA сверхэкспрессируют анаболический инсулиноподобный фактор роста (IGF) и его специфический рецептор (IGFRI), аутокринный TNF-α, высвобождаемый апоптозными клетками суставного хряща, запускает каскад, управляемый ауто / паракринным IL-1, который перекрывает активность фактора роста которые поддерживают восстановление при дегенеративных заболеваниях суставов. Хондропротекция с повторным появлением исчезнувшей суставной щели была безошибочно задокументирована в периферических суставах пациентов, страдающих спондилоартропатией, при лечении агентами, блокирующими TNF-α, которые подавляли однонаправленный цитокиновый каскад, управляемый TNF-α / IL-1.Серия агентов, модифицирующих структуру соединительной ткани (CTSMA), которые непосредственно влияют на синтез ИЛ-1 и высвобождают in vitro и снижают модулирующие характеристики нижерасположенного ИЛ-1, например активности коллагеназы, протеогликаназы и матриксной металлопротеиназы, экспрессия индуцибельной синтазы оксида азота, повышенное высвобождение оксида азота и секреция простагландина E 2 , IL-6 и IL-8, как было показано, обладают модифицирующим заболевание OA активность лекарственного средства (DMOAD) в экспериментальных моделях ОА и у людей с ОА суставов пальцев и коленей.Примерами являются кортикостероиды, некоторые сульфатированные полисахариды, химически модифицированные тетрациклины, диацетилреин / реин, глюкозамин и неомыляемые вещества авокадо / сои.

Утрата функции является следствием анатомических изменений тканей суставов при остеоартрозе (ОА). Вмешательство в анатомическое развитие ОА, по-видимому, является методом сохранения нормальной функции суставов. Вещества, которые защищают суставной хрящ во время ОА, получили название хондрозащитных средств.Когда кажется, что они изменяют течение заболевания, эти агенты могут быть названы лекарствами, модифицирующими течение болезни, (DMOAD) [1]. Боль в суставах при остеоартрите объясняется различными причинами, вторичными по отношению к анатомическим изменениям, например: воспалительные явления в синовиальной оболочке и субхондральная внутрикостная гипертензия из-за венозного застоя. В этом обзоре будут рассмотрены аспекты хондропротекторной терапии DMOAD, а не облегчение клинических симптомов, которые в конечном итоге могут возникнуть при назначении пациентам терапии DMOAD.

Гомеостаз внеклеточного матрикса здорового суставного хряща

Гомеостаз внеклеточного матрикса (ЕСМ) суставного хряща зависит от реакции клеток суставного хряща на ауто- и паракринные анаболические и катаболические пути. Наиболее важные факторы роста и цитокины, которые, как известно, участвуют в метаболизме хрящей, вырабатываются самими хондроцитами [2, 3]. Синтез и накопление ЕСМ регулируется местно продуцируемыми факторами роста, такими как инсулиноподобные факторы роста (IGF) и трансформирующий фактор роста-β (TGF-β).Специфическая регуляторная роль TGF-β была предложена при патологических условиях [4], и большое количество экспериментальных данных подтвердило важность IGF-1 как промотора роста и синтеза матрикса хондроцитами в здоровом суставном хряще. IGF-1 усиливает синтез аггрекана клетками или эксплантами суставного хряща [5-10] и in vivo и на животных моделях [11]. Оборот и деградация матрикса зависят от реакции клетки суставного хряща на катаболические цитокины, из которых IL-1α и β являются основными агонистами [12, 13].Было показано, что помимо своей способности вызывать деградацию суставного хряща, IL-1 подавляет синтез аггрекана и коллагена хондроцитами [14, 15]. Это снижение продукции соединений ЕСМ частично опосредовано ИЛ-1-индуцированным образованием оксида азота (NO) [16]. Эффекты IL-1 опосредуются высокоаффинным рецептором клеточной поверхности (IL-1RI) [17, 18]. Важными контролирующими факторами активности IL-1 являются белки, относящиеся к семейству рецепторов IL-1, среди которых рецептор-ловушка IL-1 типа 2 (IL-1RII) экспрессируется на плазматической мембране хондроцитов и связывает IL-1α и β, но не не передавать сигналы ИЛ-1 [19, 20].Интересно, что IGF, как было показано, активирует рецептор-ловушку IL-1 IL-1RII, тем самым обращая активность IL-1 [21]. Это открытие согласуется с наблюдением, что IGF-1 непосредственно снижает как базальную, так и стимулируемую цитокинами деградацию [22] и депрессию основного вещества суставного хряща [21]. Таким образом, повышая регуляцию IL-1RII, IGF-1 защищает ECM хряща от индуцированного IL-1 разрушения (рис. 1A).

Рис. 1.

Пути IL-1 / IGF, контролирующие обмен внеклеточного матрикса (ECM) в (A) здоровом хряще, (B) OA хряще и (C) OA хряще, когда проводится репрессивная терапия IL-1.(A) Активность IL-1 контролируется IGF-1 в нормальном хряще. Через повышающую регуляцию IL-1RII IGF-1 защищает ECM хряща от индуцированного IL-1 разрушения. (B) Считается, что при ОА TNF-α, высвобождаемый апоптозными клетками суставного хряща, вызывает выделение IL-1RII и запускает каскад, управляемый ауто / паракринным IL-1, что приводит к резорбции ECM. По неизвестным причинам хондроциты в хряще OA сверхэкспрессируют анаболическую активность фактора роста IGF-1 / IGF-RI. (C) Подавление активности IL-1 в хрящевых клетках, которые сверхэкспрессируют IGF-1, приводит к восстановлению ECM.

Рис. 1.

Пути IL-1 / IGF, контролирующие обмен внеклеточного матрикса (ECM) в (A) здоровом хряще, (B) хряще OA и (C) хряще OA, когда проводится репрессивная терапия IL-1. (A) Активность IL-1 контролируется IGF-1 в нормальном хряще. Через повышающую регуляцию IL-1RII IGF-1 защищает ECM хряща от индуцированного IL-1 разрушения. (B) Считается, что при ОА TNF-α, высвобождаемый апоптозными клетками суставного хряща, вызывает выделение IL-1RII и запускает каскад, управляемый ауто / паракринным IL-1, что приводит к резорбции ECM.По неизвестным причинам хондроциты в хряще OA сверхэкспрессируют анаболическую активность фактора роста IGF-1 / IGF-RI. (C) Подавление активности IL-1 в хрящевых клетках, которые сверхэкспрессируют IGF-1, приводит к восстановлению ECM.

Патология метаболических путей цитокинов и факторов роста, принимаемых ОА

Сообщалось о повышении регуляции как катаболических [2, 3, 23, 24], так и анаболических [2, 3, 23–26] путей в хондроцитах и ​​хрящах при ОА. Корреляция с возникновением и степенью патологии ОА была отмечена для ИЛ-1β [2, 3, 27], и эти повышенные уровни катаболических цитокинов воплощены в хорошо документированном увеличении активности металлопротеиназ, которые были выше в хряще ОА по сравнению с морфологически нормальными. хрящ из того же сустава [27–30].Кроме того, в хондроцитах ОА было обнаружено увеличение плотности рецепторов IL-1RI по сравнению с нормальными хондроцитами. Уровни мРНК и белка IGF-1 и его рецептора IGFRI были значительно выше в фибриллированном хряще OA, чем в нефибриллированном хряще OA тазобедренного и коленного суставов [23, 26]. Самые сильные сигналы сообщения IGF-1 или уровни белка наблюдались в хондроцитах более продвинутых поражений [23, 26]. Когда сравнивали клетки, полученные из нормальной ткани и ткани ОА из одних и тех же коленных суставов человека, ассоциированный с клетками аггрекан и коллаген типа II были значительно уменьшены вокруг хондроцитов, полученных из патологической ткани.Одновременно хондроциты из фибриллированного хряща OA экспрессировали значительно более высокие внутриклеточные уровни IL-1α и β и повышали уровень IL-1RI, связанный с плазматической мембраной. В то же время наблюдались значительно более высокие уровни внутриклеточного IGF-1 и IGF-R1, связанного с плазматической мембраной. Неожиданно оказалось, что в присутствии этой повышенной активности IGF экспрессия связанного с плазматической мембраной рецептора-ловушки IL-1RII была снижена в хондроцитах OA [26]. Снижение уровней рецептора-ловушки IL-1RII плазматической мембраны на хондроцитах ОА может быть связано с вмешательством других аутокринных цитокиновых путей.В этом контексте было показано, что TNF-α вызывает быстрое выделение IL-1RII из мембран миеломоноцитарных клеток [31, 32]. Подобный эффект TNF-α на клетки суставного хряща еще предстоит продемонстрировать. Однако присутствие TNF-α в хрящах, подвергшихся механическому повреждению, неоднократно подтверждалось примерами. Травма суставных хондроцитов вызывает апоптоз [33, 34], а апоптоз опосредуется аутокринным путем TNF [35, 36]. Повышенная активность TGF-β в хряще OA [37–39], вызывающая понижающую модуляцию передачи сигналов IL-1RI [40], может частично компенсировать потери IL-1RII, вызванные ауто / паракринной активностью TNF-α.Однако если необходимо идентифицировать метаболические пути цитокинов и факторов роста, TNF-α и IL-1β и их сигнальные рецепторы являются основными кандидатами (рис. 1B).

Агенты, модифицирующие структуру соединительной ткани (CTSMA), и лекарственные средства от остеоартрита, модифицирующие заболевание (DMOAD)

Первые попытки улучшить структуру и функцию соединительной ткани синовиальных суставов, тем самым облегчить симптомы дегенеративных заболеваний суставов, были основаны на расплывчатых предположениях о том, что обильное введение предшественников компонентов внеклеточного матрикса поможет клеткам суставного хряща восполнить утраченную среду. .Это предположение побудило врачей использовать такие вещества, как глюкозамин и сульфат или гликозаминогликаны, с целью улучшения восстановления хряща при дегенеративных заболеваниях суставов. Аналогичным образом, первое внутрисуставное введение полисульфата хондроитина было основано на предположении, что этот препарат гепариноидного типа заменит гиалуронан в качестве лубриканта и снизит уровень фибриногена в воспаленных суставах, и что это даст терапевтическое преимущество [41, 42]. Неожиданно некоторые пациенты сообщили об облегчении симптомов после прохождения этой процедуры, и даже сообщалось о некоторых изменениях в химическом составе синовиальной жидкости [43].

Наряду с глубоким поиском механизмов, посредством которых ткани суставов разрушаются в ходе воспалительных или дегенеративных заболеваний суставов, исследователи более методично искали биологические агенты, способные восстанавливать поврежденные соединительные ткани. Поскольку суставной хрящ является одной из основных тканей-мишеней, поражаемых в ходе ревматических заболеваний суставов, многие исследования были сосредоточены на метаболических характеристиках единственной клетки, находящейся в этой ткани: хондроцита. Вещества, защищающие суставной хрящ при деструктивных заболеваниях суставов, получили название хондрозащитных средств.Когда это произошло in vivo в суставах с остеоартритом, эти агенты были названы лекарствами от остеоартрита, модифицирующими заболевание (DMOAD) [1].

Поскольку ауто / паракринный фактор роста и каскады цитокинов, лежащие в основе развития, гомеостаза и разрушения внеклеточного матрикса суставного хряща, ранее не были известны, первые исследования биологических агентов, способных изменять структуру соединительной ткани в положительную сторону, в основном были сосредоточены на от способности этих агентов улучшать синтез или ухудшать разложение соединений ЕСМ, e.грамм. аггрекан и коллаген. Согласно этому определению, ряд веществ можно классифицировать как вещества, модифицирующие структуру соединительной ткани (CTSMA). Среди них неоднократно упоминались сульфатированные гликозаминогликаны и глюкозамин, химически модифицированные тетрациклины, такие как доксициклин и миноциклин, диацетилреин и его активный метаболит реин, а также неомыляемые вещества авокадо / сои.

Сульфатные полисахариды и хондрозащита

Среди первых веществ, способных улучшать накопление соединений ЕСМ, были так называемые хондромукопротеины [44–46], смесь продуктов деградации протеогликанов, в которых присутствовал хондроитинсульфат.Затем была выдвинута гипотеза, что продукты распада ВКМ, содержащие хондроитинсульфат, каким-то образом оказывают положительную обратную связь на хондроциты суставного хряща. Возможность вмешательства сульфатированных полисахаридов в процессы восстановления клеток соединительной ткани in vitro была впервые описана в середине 1970-х годов [47, 48]. Позже было показано, что полисульфат хондроитинсульфата улучшает синтез гиалуронана в синовиальных суставах in vivo у людей [49]. Тот же препарат, а также его природный аналог, хондроитинсульфат, улучшали функцию репарации хондроцитов in vivo в различных экспериментальных моделях остеоартрита [50–53].Недавно рандомизированные двойные слепые плацебо-контролируемые терапевтические испытания привели к выводу, что эти CTSMA обладают свойствами DMOAD, поскольку они, как было показано, замедляют прогрессирование эрозивного ОА в межфаланговых суставах пальцев [54, 55] и ОА коленного сустава. у человека [56–58].

In vitro и in vivo эксперименты в различных исследовательских центрах, посвященные влиянию на метаболизм молекул межклеточного матрикса (протеогликаны, аггреканы, гиалуронан), показали, что большинство (поли) сульфатированных полисахаридов влияют на клетки соединительной ткани (хрящевые клетки, синовиальные клетки, фибробласты) аналогичным образом [48, 59–61].С улучшением нашего понимания ауто / паракринного фактора роста и цитокиновых путей, которые контролируют гомеостаз здоровых соединительных тканей, стало возможным изучить механизм действия этих CTSMA. Недавние исследования сульфатированных полисахаридов показали, что эти агенты действуют в биологических системах, подавляя важные катаболические ауто / паракринные цитокиновые пути, такие как IL-1, тем самым улучшая накопление соединений ECM в клеточно-ассоциированном матриксе этих клеток.Эксперименты с бычьими хрящевыми клетками, полученными из макроскопически интактных пястно-фаланговых суставов, показали, что физиологические концентрации полисульфата хондроитина значительно снижают нижестоящие эффекты IL-1, такие как активность коллагеназы, протеогликаназы и матриксной металлопротеиназы (MMP) -1 и MMP-3 [62]. Кроме того, полисульфат хондроитина ингибировал индуцированную IL-1 экспрессию мРНК тканевого активатора плазминогена (tPA) [62]. Аналогичным образом, полисульфат ксилозана и полисульфат хондроитина восстанавливали накопление аггрекана, гиалуронана и коллагена типа II в клеточно-ассоциированном матриксе в обработанных IL-1β хондроцитах человека, культивируемых в агарозе.Этот эффект, вероятно, является частично результатом подавления MMPs [63]. Кроме того, в культивируемых хондроцитах лошадей полисульфат хондроитина значительно снижал экспрессию индуцибельной синтазы оксида азота (iNOS), усиленную IL-1β, что сопровождалось повышенным высвобождением NO. Хондроитинполисульфат снижает концентрацию нитрита в супернатантах этих IL-1β-стимулированных культур [64]. Наконец, новый полисульфатированный полисахарид, полисульфат циклодекстрина, продемонстрировал эффекты модификации структуры хряща in vitro , поскольку он улучшал синтез аггрекана и накопление связанных с клетками макромолекул матрикса клетками суставного хряща человека в альгинате.Здесь впервые было показано, что этот эффект частично является результатом прямой репрессии IL-1, поскольку клетки, обработанные полисульфатом циклодекстрина, экспрессируют значительно меньшие количества внутриклеточных IL-1α и β [65]. Те же обработанные β-циклодекстрином хондроциты высвобождали значительно меньше ИЛ-6 в супернатантную культуральную среду, эффект, который, как известно, является результатом ауто / паракринной стимуляции ИЛ-1 [65]. Следует напомнить, что концентрации полисахаридов в супернатантах культур в большинстве описанных экспериментов in vitro и уровни полисахаридов в плазме или хрящевой ткани, полученные у людей после перорального введения, были одного порядка [66–68].

Неомыляемые вещества из авокадо / сои

Сообщалось, что неомыляемые вещества авокадо / сои подавляют катаболическую активность хондроцитов и увеличивают накопление протеогликана хондроцитами ОА в культуре. Неомыляемые вещества из авокадо / сои были мощными ингибиторами основной продукции ММР-3 хондроцитами ОА и продукции IL-6, IL-8, NO и простагландина E 2 (PGE 2 ) [69]. Все эти биологические активности зависят от ИЛ-1 и выражены в хондроцитах ОА.Точно так же неомыляемые вещества из авокадо / сои обращали вспять эффекты IL-1β в фибробластах десен из воспаленных тканей [70]. Эффекты этих экстрактов, подавляющие IL-1, защищали подкожно имплантированный хрящ от деградации [71]. In vivo Эффекты DMOAD после введения неомыляемых веществ из авокадо / сои были описаны в модели менискэктомии у овец [72] и, возможно, в человеческом OA бедра [73].

Химически модифицированные тетрациклины

Было показано, что химически модифицированные тетрациклины, такие как доксициклин и миноциклин, непосредственно ингибируют активность протеаз и коллагеназ [74].Тетрациклины также могут косвенно подавлять эту катаболическую активность, поскольку, как сообщалось, они снижают уровни мРНК коллагеназ в изолированных хондроцитах ОА. Кроме того, доксициклин ингибировал увеличение мРНК этих ферментов в нормальных хондроцитах, стимулированных TNF-α [75]. Аналогичным образом, хондроциты, выделенные из хряща OA человека и обработанные доксициклином, показали значительное ингибирование белка матриксной металлопротеиназы и соответствующих уровней мРНК, что указывает на транскрипционный / посттранскрипционный уровень контроля.Кроме того, лечение доксициклином привело к значительному снижению уровня мРНК IL-1α, β и IL-6 [76].

Прямое ингибирование таких цитокинов могло быть ответственным за снижение активности синтазы оксида азота в синовиальных клетках ОА [77]. Тетрациклины обращали как спонтанную, так и индуцированную IL-1β активность NOS в ex vivo условиях в тканях OA человека. Было обнаружено, что механизм действия этих препаратов на экспрессию NOS, по крайней мере частично, находится на уровне экспрессии РНК и трансляции фермента [78].

Вероятно, что снижение активности коллагеназы и желатиназы в экстрактах хрящей остеоартрита человека после перорального введения этих тетрациклинов человеку [79], а также открытие, что доксициклин ингибирует продукцию NO в хряще у собак, у которых развился ОА после спонтанного разрыв передней крестообразной связки [80], возможно, был приписан ингибированию активности ауто / паракринных катаболических цитокинов. Скорее всего, это ингибирование каскадов катаболических цитокинов было ответственно за «хондропротекторные» эффекты при воспалительных артритах на животных моделях.Профилактические доксициклины и химически модифицированные варианты, вводимые перорально, снижали изменения ОА в коленных суставах in vivo у морских свинок Хартли, которые имеют высокую частоту ОА коленных суставов [81], и заметно снижали тяжесть ОА в областях, несущих нагрузку. медиального мыщелка бедренной кости при экспериментальном ОА у взрослых беспородных собак [82]. Совсем недавно было показано, что лечение доксициклином в дозе 100 мг два раза в день в течение 30 месяцев снижает скорость сужения суставной щели в коленях с установленным остеоартритом в группе женщин с ожирением [83].

диацетилреин

В отличие от других CTSMA, которые ингибируют NO [64, 69, 77, 78, 107, 110–113] и продукцию простаноидов [69, 108, 110–112, 114], активный метаболит диацетилреина, реин не снижает, но, по-видимому, стимулирует синтез простагландинов in vitro [84, 85] и in vivo [86]. Этот механизм действия диацетилреина по увеличению экспрессии циклооксигеназы (COX) -2 и продукции PGE 2 , независимо от их ингибирования эндогенного NO [85, 87], аналогичен таковому у тетрациклинов, например.грамм. доксициклин и миноциклин, которые ингибируют индуцибельную NO-синтазу и увеличивают экспрессию ЦОГ-2 [88, 89]. Rhein и тетрациклины являются родственными химическими структурами в том смысле, что эти соединения возникают в результате реакций замещения полиядерных углеводородов: антрацена и нафтацена соответственно. Реин и тетрациклины обладают структурным сходством (рис. 2).

Рис. 2.

Райн, активный метаболит диацетилреина, и тетрациклин обладают структурным сходством.

Рис. 2.

Райн, активный метаболит диацетилреина, и тетрациклин обладают структурным сходством.

Подобно тетрациклинам, диацетилреин / реин подавлял экспрессию ИЛ-1 в активированных липополисахаридами хондроцитах ОА человека [90] и синовиальных клетках [91]. Эксперименты на изолированных хондроцитах суставного хряща и на эксплантатах хрящевой ткани показали, что это нарушение высвобождения активного ИЛ-1 частично связано с ингибированием фермента, преобразующего ИЛ-1 (ICE) плазматической мембраны.Судя по отсутствию влияния на уровень экспрессии генов обоих белков, действие диацетилреина / реина на IL-1β и ICE должно было быть посттрансляционным [92]. Понижающая модуляция активной продукции IL-1 сопровождалась ингибированием активации NFκB [93] и, следовательно, экспрессии IL-1 / NFκB-зависимых генов в этих клетках [90, 91, 93]. Блокирующие нижестоящие события IL-1 включали снижение продукции NO, стромелизина-1 [91, 94] и коллагеназы, а также провоспалительных IL-6, -8 и -18 в IL-1α и TNF-α активированных монослойных культивируемых суставных хондроцитах человека из ОА суставов [92, 94].Аналогичным образом, реин подавлял индуцированную IL-1 экспрессию генов proMMP-1, -3, -9 и -13 и их активности, а также повышал продукцию тканевого ингибитора металлопротеиназы 1 (TIMP-1) в монослое культивированных суставные хондроциты кролика. Следовательно, в этих клетках сообщалось об увеличении выработки гликозаминогликанов и коллагена наряду со снижением деградации протеогликана [95–97]. Это улучшенное наращивание матрикса могло быть усилено увеличением экспрессии изоформ TGF-β в хондроцитах, обработанных диацетилреином [98].Все эти результатов in vitro были получены с концентрациями диацетилреина / реина, сравнимыми с терапевтическими уровнями в плазме. Можно разумно предположить, что блокирование ИЛ-1 диацетилреином / реином было ответственно за некоторые эффекты DMOAD, наблюдаемые при экспериментальном ОА у животных, например при ушибе индуцированного разрушения хряща надколенника кролика [99] и при спонтанно развивающемся полиартрите у мышей NZB / KN [100]. Хотя это не согласуется с улучшением биохимии суставного хряща [101–103], сравнимая хондрозащита наблюдалась в различных моделях ОА собак, если судить по макроскопическим повреждениям хряща [102, 103].

Эти эффекты DMOAD были подтверждены в двух рандомизированных двойных слепых плацебо-контролируемых исследованиях. Двести шестьдесят девять пациентов с первичным ОА бедра завершили трехлетнее исследование, получая диацетилреин в дозе 50 мг два раза в день или плацебо. Процент пациентов с рентгенологическим прогрессированием, определяемым как потеря суставной щели не менее 0,5 мм, был значительно ниже у пациентов, получавших диацетилреин, чем у пациентов, получавших плацебо. У этих пациентов частота сужения суставной щели была дискретной, но значительно ниже, чем в группе плацебо [104].Эти результаты были подтверждены в другом 1-летнем проспективном рандомизированном двойном слепом плацебо-контролируемом исследовании 301 пациента с радиологическим медиальным ОА коленного сустава [105].

Глюкозамин

Место глюкозамина как CTSMA или DMOAD остается спорным. Тот факт, что этот аминосахар долгое время назывался «сульфатом глюкозамина», вызвал путаницу. Препарат, использованный в ряде экспериментов in vitro и in vivo , не был сложным эфиром сульфата глюкозамина, а оказался препаратом, в котором глюкозамин и сульфат присутствовали в виде двух отдельных молекул в кристаллической форме.Если какие-либо эффекты CTSMA приписываются «сульфату глюкозамина», в настоящее время считается, что активным ингредиентом является моносахарид. В серии экспериментов с изолированными IL-1β-активированными хондроцитами в культуре, где использовались гексозамины, сообщалось о влиянии на последующие события IL-1. Добавление глюкозамина к хондроцитам крысы, обработанным IL-1β, уменьшало активацию фактора транскрипции NFκB, но не белка-активатора-1 [106]. Глюкозамин, но не N, -ацетилглюкозамин или другие моносахариды [107], значительно ингибировал активность NFκB в хондроцитах ОА человека, а также ядерную транслокацию белков p50 и p65 [108].Глюкозамин снижал активность фосфолипазы A2 [109], уровни мРНК и белка ЦОГ-2 [107, 108, 110] и высвобождение PGE 2 [108, 110–114] в клетках суставного хряща различного происхождения. Сходным образом аминосахар снижает продукцию iNOS и NO хондроцитами [107, 110–113] и индуцирует IL-1 металлопротеиназную и коллагеназную активности в супернатантах культур хондроцитов [109–113, 115]. Заметное ингибирование аггреканазозависимого расщепления аггрекана наблюдалось как с клетками крысы, так и с эксплантами крупного рогатого скота при добавлении глюкозамина [116] и маннозамина [117].Ингибирование не было связано с вмешательством в передачу сигналов IL-1, и точный механизм, с помощью которого гексозамины функционируют в этой системе, неясен. Вмешательство в активность ферментов привело к снижению катаболизма ВКМ в этих культурах хондроцитов [113]. Кроме того, сообщалось, что гексозамины улучшают синтез макромолекул ECM в IL-1-репрессированных хрящевых клетках [106, 111, 112, 115]. Большинство цитируемых экспериментов проводилось на нормальных хондроцитах, хондроцитах или хрящевых эксплантатах, примированных IL-1.Редко использовались нативные хондроциты ОА [109, 115]. Основная проблема с исследованиями in vitro , проведенными до сих пор, — это концентрации гексозаминов, используемых в этих экспериментах. Обычно пациентам с ОА ежедневно вводят 1500 мг глюкозамина (20 мг / кг у субъекта массой 75 кг). Эти предписанные количества в лучшем случае обеспечивают концентрацию гексозамина в плазме 0,15–0,30 мМ у среднестатистического европейца. Два из вышеупомянутых экспериментальных исследований были проведены с концентрациями глюкозамина в этом диапазоне [115, 117].Остальные были сделаны с использованием нефизиологических уровней глюкозамина в питательной среде в диапазоне от 0,56 до 139,66 мМ [106–113, 116], условий, в которых ингибирование катаболических эффектов, вызванных IL1β, могло быть связано с токсичностью глюкозамина [118].

Актуальность результатов in vitro , полученных с супрафизиологическими дозами глюкозамина, остается спорным, поскольку ежедневное введение ~ 20 мг / кг глюкозамина пероральным путем кроликам, у которых выполнялось перерезание передней крестообразной связки, имело только обнаруживаемый участок. -специфический, частичный модифицирующий болезнь эффект в этой модели ОА.Введение глюкозамина не предотвращало фибрилляцию и / или эрозию суставного хряща у обработанных животных [119]. Кроме того, парентеральное введение 200 мг / кг N-ацетил-глюкозамина на кроличьей модели экспериментального ОА коленного сустава не показало хондропротекторных эффектов [120]. Механизм действия, с помощью которого этот гексозамин, таким образом, мог повлиять на эволюцию одной человеческой популяции с ОА коленного сустава [121, 122], таким образом, еще предстоит выяснить. Принимая во внимание отсутствие хондрозащиты в экспериментальных животных моделях ОА, подтверждение хондропротекторных эффектов глюкозамина в человеческой популяции было бы ценным.

Кортикостероиды и ИЛ-1

Гомеостаз ВКМ клетками суставного хряща зависит от контроля ауто / паракринных катаболических каскадов, индуцированных ИЛ-1 [21]. Множество эндокринных гормонов и факторов роста способны контролировать эту активность IL-1. Классически сообщалось, что кортикостероиды напрямую влияют на синтез ИЛ-1 [123, 124]. Как показано на культурах хрящевых эксплантатов, кортикостероидные гормоны в физиологических дозах ингибируют деградацию внеклеточного матрикса [125–127].Это ингибирование пути IL-1 привело к снижению патологической активности нейтральных протеаз в хрящевой ткани [128–132]. Помимо того факта, что кортикостероиды действуют синергетически с различными основными факторами роста и дифференцировки, влияя на синтез основного вещества внеклеточного матрикса [133–135], антикатаболические эффекты кортикостероидов, по крайней мере, частично объясняют защитные эффекты на хрящ ОА однократного или периодического действия. местное или системное введение физиологических доз кортикостероидов в различных моделях экспериментально индуцированного ОА, таких как модель менискэктомированного кролика [136, 137], при химически индуцированном повреждении хряща у морской свинки [138] и в модели собаки Паунда-Нуки. ОА [132, 139].Подобные защитные эффекты этих препаратов наблюдались на хрящах остеоартрита у людей [131]. Это подавление IL-1 физиологическими дозами кортикостероидов вместе с повышающей регуляцией рецептора IGF-1 в конечном итоге привело к накоплению соединений ECM в непосредственном окружении хрящевых клеток in vitro [63, 140] .

Защита и регенерация суставного хряща с помощью блокаторов цитокинов: доказательство концепции

Совсем недавно были зарегистрированы драматические хондропротекторные эффекты у пациентов с РА и деструктивным артритом, ассоциированным со спондилоартропатией (СПА).У этих пациентов TNF-α, высвобождаемый в синовиальной мембране, запускает катаболический ауто / паракринный путь IL-1 хондроцитов в соседнем суставном хряще [141]. Результирующий каскад ауто / паракринного IL-1 будет вызывать разрушение внеклеточного матрикса суставного хряща. Лечение пациентов с РА рекомбинантными белками, поглощающими TNF-α, подавляет активность IL-1 хондроцитов и останавливает эрозивную прогрессию, продолжающуюся в течение этих воспалительных заболеваний [142]. Нейтрализация TNF-α при RA в конечном итоге приводит к очевидному восстановлению пораженных суставов [143].Повторное появление исчезнувшей суставной щели было зарегистрировано при периферическом артрите, связанном с СПА [144, 145] (рис. 3). Сходным образом при ОА ауто / паракринный TNF-α, возникающий в результате апоптоза хондроцитов [31–34] после чрезмерного механического стресса, вызывает индуцированное IL-1 разрушение внеклеточной среды суставного хряща. Насколько подобное блокирование TNF-α может привести к остановке прогрессирования этого заболевания, еще не изучено.

Рис.3.

Хондрозащита и регенерация суставного хряща блокаторами цитокинов. (A) Тазобедренный сустав пациента с анкилозирующим спондилитом до (слева) и после 1 года лечения инфликсимабом, блокирующим TNF-α моноклональным антителом. Прекращено развитие эрозии, вновь появилась суставная щель. (B) Такое же течение наблюдалось в третьем проксимальном межфаланговом суставе и втором дистальном межфаланговом суставе пациента, страдающего псориатическим артритом. Эти записи были получены после завершения серии проспективных рандомизированных плацебо-контролируемых исследований, одобренных местным комитетом по этике, в которые были включены 107 пациентов для изучения влияния инфликсимаба на клинические признаки спондилоартропатии [144]. , Ван дер Бош, представлен].Рентгеновские снимки пораженных суставов были сделаны при поступлении и через 1 год наблюдения. (C) При эрозивном ОА межфалангового сустава пальца подобный тип ремоделирования происходит спонтанно после прекращения деструктивного эпизода. Четыре рентгеновских снимка были сделаны с интервалом в 1 год [145].

Рис. 3.

Хондропротекция и регенерация суставного хряща цитокиноблокаторами. (A) Тазобедренный сустав пациента с анкилозирующим спондилитом до (слева) и после 1 года лечения инфликсимабом, блокирующим TNF-α моноклональным антителом.Прекращено развитие эрозии, вновь появилась суставная щель. (B) Такое же течение наблюдалось в третьем проксимальном межфаланговом суставе и втором дистальном межфаланговом суставе пациента, страдающего псориатическим артритом. Эти записи были получены после завершения серии проспективных рандомизированных плацебо-контролируемых исследований, одобренных местным комитетом по этике, в которые были включены 107 пациентов для изучения влияния инфликсимаба на клинические признаки спондилоартропатии [144]. , Ван дер Бош, представлен].Рентгеновские снимки пораженных суставов были сделаны при поступлении и через 1 год наблюдения. (C) При эрозивном ОА межфалангового сустава пальца подобный тип ремоделирования происходит спонтанно после прекращения деструктивного эпизода. Четыре рентгеновских снимка были сделаны с интервалом в 1 год [145].

Обсуждение

Идентичные пути цитокинов и факторов роста контролируют разрушение и восстановление при ОА и воспалительных заболеваниях суставов, таких как RA и SPA-ассоциированный артрит. Однонаправленные каскады цитокинов, управляемые TNF-α / IL-1, нарушают гомеостаз ECM суставного хряща при этих нарушениях.TNF-α, происходящий из синовиальной мембраны, запускает каскад во время воспалительных патологий, в то время как при ОА аутокринный TNF-α, высвобождаемый апоптозными клетками суставного хряща, вызывает активность IL-1. Как при воспалительных, так и при дегенеративных состояниях, каскады цитокинов, управляемые TNF-α / IL-1, преобладают над путями факторов роста, способствующих анаболической репарации. Однако, когда биологические препараты, блокирующие TNF-α, вводили при иммунологически опосредованных воспалительных артритах, безошибочно было продемонстрировано восстановление тканей.В СПА зафиксировано повторное появление ранее исчезнувшей суставной щели.

Точно так же репрессия каскадов цитокинов, управляемых TNF-α / IL-1, должна позволить репарации стать еще более очевидной при ОА, поскольку пути анаболического фактора роста также сверхэкспрессируются в этом состоянии. Было показано, что кортикостероиды, отдельные классы (поли) сульфатированных полисахаридов, тетрациклины, диацетилреин / реин, авокадо / соевые бобы и глюкозамин подавляют IL-1 и, по-видимому, подавляют нижестоящие характеристики IL-1, например.грамм. активность коллагеназы, протеогликаназы и ММП, экспрессия iNOS и повышенное высвобождение NO, а также выделение PGE 2 , IL-6 и IL-8. За исключением кортикостероидов и диацетилреина, эти агенты не продемонстрировали стимуляции активности фактора роста. Все эти CTSMA, способные напрямую влиять на синтез и высвобождение IL-1 in vitro , как было показано, обладают активностью DMOAD в экспериментальных моделях ОА и в популяциях людей с ОА коленных и пальцевых суставов.Эффекты DMOAD глюкозамина in vivo остаются несколько спорными, поскольку концентрации гексозаминов, которые были эффективны в экспериментах in vitro , никогда не были достигнуты при системном введении аминосахаров экспериментальным животным или людям. Фармакологическое усиление факторов, способствующих репарации, например Ожидается, что TGF-β и / или IGF-1 не сильно повлияют на изменение заболевания при ОА. Пути анаболического восстановления уже чрезмерно выражены при этом заболевании.Этим объясняется затяжной характер ОА и очевидные признаки ремоделирования тканей сустава ОА.

Поскольку однонаправленный каскад цитокинов, управляемый TNF-α / IL-1, был идентифицирован как лекарственная мишень при ОА, простые лабораторные процедуры позволят обнаружить новую серию CTSMA с активностями DMOAD.

Авторы заявили об отсутствии конфликта интересов.

Список литературы

1

Altman RD, Hochberg MC, Moskowitz RW, Schnitzer TJ.Рекомендации по медикаментозному лечению остеоартроза тазобедренного и коленного суставов. Обновление 2000 года. Подкомитет ACR по рекомендациям по остеоартриту.

Arthritis Rheum

2000

;

43

:

1905

–15,2

Chambers MG, Bayliss MT, Mason RM. Экспрессия цитокинов хондроцитов и факторов роста при остеоартрите мышей.

Тележка для лечения артроза

1997

;

5

:

301

–8.3

Моос В., Фикерт С., Мюллер Б., Вебер Ю., Сипер Дж.Иммуногистологический анализ экспрессии цитокинов при остеоартрите человека и здоровом хряще.

J Rheumatol

1999

;

26

:

870

–9,4

van Beuningen HM, van der Kraan PM, Arntz OJ, van den Berg WB. Защита от интерлейкина 1 индуцировала разрушение суставного хряща путем трансформации фактора роста бета: исследования на анатомически неповрежденном хряще in vitro и in vivo .

Ann Rheum Dis

1993

;

52

:

185

–91.5

Guenther HL, Guenther HE, Froesch ER, Fleisch H. Влияние инсулиноподобного фактора роста на синтез коллагена и гликозаминогликанов суставными хондроцитами кролика в культуре.

Experientia

1982

;

38

:

979

–81,6

McQuillan DL, Handley CJ, Campbell MA, Bolis S, Milway VE, Herington AC. Стимуляция синтеза протеогликана сывороткой и инсулиноподобным фактором роста-1 в культивируемом суставном хряще крупного рогатого скота.

Biochem J

1986

;

240

:

423

–30.7

Luyten FP, Hascall VC, Nissley SP, Morales TI, Reddi AH. Инсулиноподобные факторы роста поддерживают стабильный метаболизм протеогликанов в эксплантатах суставного хряща крупного рогатого скота.

Arch Biochem Biophys

1988

;

267

:

416

–25,8

Tesch GH, Handley CJ, Cornell HJ, Herington AC. Влияние свободных и связанных инсулиноподобных факторов роста на метаболизм протеогликанов в эксплантатах суставного хряща.

J Orthop Res

1992

;

10

:

14

–22.9

Verbruggen G, Malfait AM, Dewulf M, Broddelez C, Veys EM. Стандартизация питательных сред для изолированных суставных хондроцитов человека в гелеобразной суспензионной культуре агарозы.

Тележка для лечения артроза

1995

;

3

:

249

–59,10

Yaeger PC, Masi TL, de Ortiz JL, Binette F, Tubo R, McPherson JM. Синергетическое действие трансформирующего фактора роста-бета и инсулиноподобного фактора роста-I индуцирует экспрессию генов коллагена и аггрекана типа II в суставных хондроцитах взрослого человека.

Exp Cell Res

1997

;

237

:

318

–25,11

Verschure PJ, van Marle J, Joosten LA, van den Berg WB. Экспрессия хондроцитарного рецептора IGF-1 и реакция на стимуляцию IGF-1 в суставном хряще мыши во время различных фаз экспериментально индуцированного артрита.

Ann Rheum Dis

1995

;

54

:

645

–53,12

Саклатвала Дж., Пилсворт LMC, Сарсфилд С.Дж., Гравилович Дж., Хит Дж. К.. Катаболин свиньи — это форма интерлейкина 1.

Biochem J

1984

;

224

:

461

–6,13

Дингл Дж. Т., Саклатвала Дж., Хембри Р., Тайлер Дж., Фелл Х. Б., Джубб Р. Катаболический фактор хряща из синовиальной оболочки.

Biochem J

1979

;

184

:

177

–80,14

Dingle JT. Влияние синовиального катаболина на синтетическую активность хряща.

Connect Tiss Res

1984

;

12

:

277

–86,15

Тайлер Дж. А., Саклатвала Дж.Свиной ИЛ-1 (катаболин) вызывает резорбцию протеогликана хряща и предотвращает синтез протеогликана и коллагена.

Br J Rheumatol

1985

;

24 (Дополнение 1)

:

150

–5,16

Таскиран Д., Стефанович-Рачич М., Георгеску Х.И., Эванс Ч. Оксид азота опосредует подавление синтеза протеогликанов хряща интерлейкином-1.

Biochem Biophys Res Commun

1994

;

200

:

142

–8,17

Берд Т.А., Саклатвала Дж.Идентификация общего класса рецепторов с высоким сродством для обоих типов интерлейлина-1 на клетках соединительной ткани.

Nature

1986

;

324

:

263

–6,18

Чандрасекхар С., Харви А.К. Индукция рецепторов интерлейкина-1 на хондроцитах фактором роста фибробластов: возможный механизм модуляции активности интерлейкина-1.

J Cell Physiol

1989

;

138

:

236

–46,19

Colotta F, Re F, Muzio M et al .Рецептор интерлейкина-1 типа II: мишень-приманка для IL-1, которая регулируется IL-4.

Наука

1993

;

261

:

472

–5.20

Аттур М.Г., Дэйв М., Чиполлетта С. и др. . Обращение аутокринных и паракринных эффектов интерлейкина 1 (ИЛ-1) при артрите человека с помощью рецептора-ловушки ИЛ-1 типа II. Возможность фармакологического вмешательства.

J Biol Chem

2000

;

275

:

40307

–1521

Wang J, Elewaut D, Veys EM, Verbruggen G.Индуцированный инсулиноподобным фактором роста 1 рецептор интерлейкина-1 II подавляет активность интерлейкина-1 и контролирует гомеостаз внеклеточного матрикса хряща.

Arthritis Rheum

2003

;

48

:

1281

–91,22

Тайлер Дж.А. Инсулиноподобный фактор роста 1 может уменьшать деградацию и способствовать синтезу протеогликана в хряще, подвергающемся действию цитокинов.

Biochem J

1989

;

260

:

543

–8.23

Миддлтон Дж. Ф., Тайлер Дж. А. Повышение экспрессии гена инсулиноподобного фактора роста I в поражениях суставного хряща человека при остеоартрите.

Ann Rheum Dis

1992

;

51

:

440

–7,24

Миддлтон Дж., Манти А., Тайлер Дж. Рецептор инсулиноподобного фактора роста (ИФР), ИФР-I, интерлейкин-1 бета (ИЛ-1 бета) и экспрессия мРНК ИЛ-6 при остеоартрите и нормальном хряще человека.

J Histochem Cytochem

1996

;

44

:

133

–41.25

Verschure PJ, Marle JV, Joosten LA, Helsen MM, Lafeber FP, Berg WB. Локализация рецептора инсулиноподобного фактора роста-1 в нормальном и остеоартрозном хрящах человека в отношении синтеза и содержания протеогликана.

Br J Rheumatol

1996

;

35

:

1044

–55,26

Ван Дж., Вердонк П., Элеваут Д., Вейс Е.М., Вербрюгген Г. Гомеостаз внеклеточного матрикса нормальных и остеоартрозных хондроцитов суставного хряща человека in vitro.

Тележка для лечения артроза

2003

;

11

:

801

–9.27

Шлопов Б.В., Гумановская М.Л., Поспешный К.А. Аутокринная регуляция коллагеназы 3 (матриксная металлопротеиназа 13) при остеоартрите.

Arthritis Rheum

2000

;

43

:

195

–205.28

Pelletier JP, Martel-Pelletier J, Howell DS, Ghandur-Mnaymneh L, Enis JE, Woessner JF Jr. Коллагеназа и коллагенолитическая активность в остеоартритическом хряще человека.

Arthritis Rheum

1983

;

26

:

63

–8.29

Okada Y, Shinmei M, Tanaka O et al .Локализация матриксной металлопротеиназы 3 (стромелизина) в остеоартрозном хряще и синовиальной оболочке.

Lab Invest

1992

;

66

:

680

–90,30

Arner EC, Tortorella MD. Передача сигнала через рецепторы интегрина хондроцитов индуцирует синтез металлопротеиназы матрикса и действует синергично с интерлейкином-1.

Arthritis Rheum

1995

;

38

:

1304

–14,31

Орландо С., Сирони М., Бьянки Г. и др. .Роль металлопротеаз в высвобождении рецептора-ловушки IL-1 типа II.

J Biol Chem

1997

;

272

:

31764

–9,32

Penton-Rol G, Orlando S, Polentarutti N et al . Бактериальный липополисахарид вызывает быстрое выделение с последующим ингибированием экспрессии мРНК рецептора IL-1 типа II с сопутствующей активацией рецептора типа I и индукцией не полностью сплайсированных транскриптов.

J Immunol

1999

;

162

:

2931

–8.33

D’Lima DD, Hashimoto S, Chen PC, Colwell CW Jr, Lotz MK. Апоптоз хондроцитов человека в ответ на механическое повреждение.

Тележка для лечения артроза

2001

;

9

:

712

–9,34

Редман С.Н., Даутуэйт Г.П., Томсон Б.М., Арчер CW. Клеточные реакции суставного хряща на резкую и тупую травму.

Тележка для лечения артроза

2004

;

12

:

106

–16.35

Айзава Т., Кон Т., Эйнхорн Т.А., Герстенфельд Л.С.Индукция апоптоза хондроцитов фактором некроза опухоли-α.

J Orthop Res

2001

;

19

:

785

–96,36

Islam N, Haqqi TM, Jepsen KJ et al . Гидростатическое давление индуцирует апоптоз в хондроцитах человека из остеоартрозного хряща за счет усиления фактора некроза опухоли-α, индуцибельной синтазы оксида азота, p53, c-myc и bax-alpha, а также подавления bcl-2.

J Cell Biochem

2002

;

87

:

266

–78.37

Моос В., Фикерт С., Мюллер Б., Вебер Ю., Сипер Дж. Иммуногистологический анализ экспрессии цитокинов в человеческом остеоартрите и здоровом хряще.

J Rheumatol

1999

;

26

:

870

–9.38

Verdier MP, Seite S, Guntzer K, Pujol JP, Boumediene K. Иммуногистохимический анализ бета-изоформ трансформирующего фактора роста и их рецепторов в хряще человека из нормальных и остеоартрозных головок бедренной кости.

Rheumatol Int

2005

;

25

:

118

–24.39

Четина Е.В., Сквайрс Дж., Пул А.Р. Усиленная деградация коллагена II типа и очень ранняя очаговая дегенерация хряща связаны с активацией генов, связанных с дифференцировкой хондроцитов, в ранних поражениях суставного хряща человека.

J Ревматол

2005

;

32

:

876

–86,40

Harvey AK, Hrubey PS, Chandrasekhar S. Ингибирование активности интерлейкина-1 трансформирующим фактором роста бета включает подавление рецепторов интерлейкина-1 на хондроцитах.

Exp Cell Res

1991

;

195

:

376

–85.41

Эйлау О. Внутрисуставная гепариновая терапия истинного деформирующего артроза коленного сустава.

Мед Клин

1959

;

54

:

145

.42

Эйлау О. О патогенезе и причинном лечении артроза коленного сустава.

Мед Клин

1960

;

55

:

2367

–70,43

Momburg M, Stuhlsatz HW, Vogeli H, Vojtisek O, Eylau O, Greiling H.Клинические химические изменения в синовиальной жидкости после внутрисуставной инъекции полисульфата гликозаминогликана.

Z Rheumatol

1976

;

35 (Приложение 4)

:

389

–90,44

Нево З., Хорвиц А.Л., Дорфман А. Синтез хондромукопротеина хондроцитами в суспензионной культуре.

Дев Биол

1972

;

28

:

219

–28,45

Нево З., Дорфман А. Стимуляция синтеза хондромукопротеина в хондроцитах внеклеточным хондромукопротеином.

Proc Natl Acad Sci USA

1972

;

69

:

2069

–72,46

Kosher RA, Lash JW, Minor RR. Экологическое усиление хондрогенеза in vitro.

Дев Биол

1973

;

35

:

210

–20,47

Шварц Н.Б., Дорфман А. Стимуляция продукции хондроитинсульфат-протеогликана хондроцитами в монослое.

Conn Tiss Res

1975

;

3

:

115

–22,48

Verbruggen G, Veys EM.Влияние сульфатированных гликозаминогликанов на метаболизм протеогликанов в клетках синовиальной оболочки.

Acta Rheumatol

1977

;

1

:

75

–92,49

Verbruggen G, Veys EM. Влияние гиперсульфатированного гепариноида на метаболизм гиалуроната синовиальной клетки человека in vivo .

J Rheumatol

1979

;

6

:

554

–61,50

Kalbhen DA. Экспериментальное подтверждение противоартритной активности полисульфата гликозаминогликана.

Z Ревматол

1983

;

42

:

178

–84,51

Carreno MR, Muniz OE, Howell DS. Эффект гликозаминогликана сложного эфира полисерной кислоты на суставной хрящ при экспериментальном остеоартрите: влияние на морфологические переменные тяжести заболевания.

J Rheumatol

1986

;

13

:

490

–7,52

Бреннан Дж. Дж., Ахерн FX, Накано Т. Влияние лечения полисульфатом гликозаминогликана на прочность, содержание гиалуроновой кислоты в синовиальной жидкости и протеогликановый агрегат в суставном хряще хромых хряков.

Can J Vet Res

1987

;

51

:

394

–8,53

Убельхарт Д., Тонар Э. Дж., Чжан Дж., Уильямс Дж. М.. Защитный эффект экзогенного хондроитин-4,6-сульфата при острой деградации суставного хряща у кролика.

Тележка для лечения артроза

1998

;

6 (Дополнение A)

:

6

–13,54

Verbruggen G, Goemaere S, Veys EM. Хондроитинсульфат: S / DMOAD (лекарственное средство против остеоартрита, изменяющее структуру / заболевание) при лечении остеоартрита суставов пальцев.

Тележка для лечения артроза

1998

;

6 (Дополнение A)

:

37

–8,55

Verbruggen G, Goemaere S, Veys EM. Системы для оценки прогрессирования остеоартрита суставов пальцев и эффектов лекарств, влияющих на лечение остеоартрита.

Clin Rheumatol

2002

;

21

:

231

–43,56

Убельхарт Д., Тонар Э. Дж., Дельмас П. Д., Шантрейн А., Виньон Э. Влияние перорального хондроитинсульфата на прогрессирование остеоартрита коленного сустава: пилотное исследование.

Тележка для лечения артроза

1998

;

6 (Дополнение A)

:

39

–46,57

Убельхарт Д., Малез М., Марколонго Р. и др. . Прерывистое лечение остеоартрита коленного сустава пероральным хондроитинсульфатом: однолетнее рандомизированное двойное слепое многоцентровое исследование по сравнению с плацебо.

Тележка для лечения артроза

2004

;

12

:

269

–76,58

Мишель Б.А., Штуки Г., Фрей Д. и др. . Хондроитины 4 и 6 сульфат при остеоартрозе коленного сустава: рандомизированное контролируемое исследование.

Arthritis Rheum

2005

;

52

:

779

–86,59

Verbruggen G, Veys EM. Внутрисуставная инъекция пентозанполисульфата приводит к увеличению молекулярной массы гиалуронана в суставной жидкости.

Clin Exp Rheumatol

1992

;

10

:

249

–54,60

Francis DJ, Hutadilok N, Kongtawelert P, Ghosh P. Полисульфат пентозана и полисульфат гликозаминогликана стимулируют синтез гиалуронана in vivo .

Rheumatol Int

1993

;

13

:

61

–4,61

Verbruggen G, Cornelissen M, Elewaut D, Broddelez C., De Ridder L., Veys EM. Влияние полисульфатированных полисахаридов на аггреканы, синтезируемые дифференцированными суставными хондроцитами человека.

J Rheumatol

1999

;

26

:

1663

–71,62

Sadowski T., Steinmeyer J. Влияние полисульфатированного гликозаминогликана и триамцинолона ацетонида на продукцию протеиназ и их ингибиторов обработанными IL-1alpha суставными хондроцитами.

Biochem Pharmacol

2002

;

64

:

217

–27.63

Ван Л., Ван Дж., Альмквист К.Ф., Вейс Е.М., Вербругген Г. Влияние полисульфатированных полисахаридов и гидрокортизона на метаболизм внеклеточного матрикса суставных хондроцитов человека in vitro.

Clin Exp Rheumatol

2002

;

20

:

669

–76,64

Tung JT, Venta PJ, Caron JP. Индуцируемая экспрессия оксида азота в суставных хондроцитах лошади: эффекты противовоспалительных соединений.

Тележка для лечения артроза

2002

;

10

:

5

–12,65

Verdonk P, Wang J, Elewaut D, Broddelez C, Veys EM, Verbruggen G. Полисульфаты циклодекстрина усиливают восстановление внеклеточного матрикса хондроцитов человека.

Тележка для лечения артроза

2005

;

13

:

887

–95.66

Muller W., Panse P, Brand S, Staubli A. Исследование in vivo распределения, сродства к хрящам и метаболизма полисульфата гликозаминогликана (GAGPS, Arteparon).

Z Ревматол

1983

;

42

:

355

–61.67

Volpi N. Пероральное всасывание и биодоступность хондроитинсульфата ихтикового происхождения у здоровых добровольцев мужского пола.

Тележка для лечения артроза

2003

;

11

:

433

–41,68

Volpi N. Биодоступность хондроитинсульфата (Кондросульф) и его компонентов при пероральном введении у здоровых добровольцев мужского пола.

Тележка для лечения артроза

2002

;

10

:

768

–77.69

Хенротин Ю.Е., Санчес С., Деберг М.А. и др. . Неомыляемые вещества авокадо / соевые бобы увеличивают синтез аггрекана и снижают выработку катаболических и провоспалительных медиаторов хондроцитами человека при остеоартрите.

J Ревматол

2003

;

30

:

1825

–34,70

Kut-Lasserre C, Miller CC, Ejeil AL et al . Влияние неомыляемых веществ авокадо и сои на желатиназу A (MMP-2), стромелизин 1 (MMP-3) и тканевые ингибиторы секреции матриксной металлопротеиназы (TIMP-1 и TIMP-2) фибробластами человека в культуре.

J Periodontol

2001

;

72

:

1685

–94,71

Хайял MT, Эль-Газали, Массачусетс. Возможный «хондрозащитный» эффект неомыляемых компонентов авокадо и сои in vivo .

Drugs Exp Clin Res

1998

;

24

:

41

–50.72

Cake MA, Read RA, Guillou B., Ghosh P. Модификация патологии суставного хряща и субхондральной кости в модели остеоартрита менискэктомии у овец неомыляемыми веществами авокадо и сои (ASU).

Тележка для лечения артроза

2000

;

8

:

404

–11.73

Lequesne M, Maheu E, Cadet C, Dreiser RL. Структурное влияние неомыляемых веществ авокадо / сои на потерю суставной щели при остеоартрозе тазобедренного сустава.

Arthritis Rheum

2002

;

47

:

50

–8,74

Yu LP Jr, Smith GN Jr, Hasty KA, Brandt KD. Доксициклин подавляет коллагенолитическую активность XI типа экстрактов из хрящей остеоартрита человека и желатиназы.

J Rheumatol

1991

;

18

:

1450

–2,75

Шлопов Б.В., Смит Г.Н. мл., Коул А.А., Хэсти К.А. Дифференциальные паттерны ответа на доксициклин и трансформирующий фактор роста бета1 при подавлении коллагеназ в остеоартрите и нормальных хондроцитах человека.

Arthritis Rheum

1999

;

42

:

719

–27,76

Шлопов Б.В., Стюарт Ю.М., Гумановская М.Л., Спешка К.А. Регулирование коллагеназы хряща доксициклином.

J Ревматол

2001

;

28

:

835

–42,77

Borderie D, Hernvann A, Hilliquin P, Lemarchal H, Kahan A, Ekindjian OG. Тетрациклины подавляют выработку нитрозотиола цитокин-стимулированными синовиальными клетками остеоартрита.

Inflamm Res

2001

;

50

:

409

–14,78

Amin AR, Attur MG, Thakker GD et al . Новый механизм действия тетрациклинов: эффекты на синтазы оксида азота.

Proc Natl Acad Sci USA

1996

;

93

:

14014

–9,79

Smith GN Jr, Yu LP Jr, Brandt KD, Capello WN. Пероральный прием доксициклина снижает активность коллагеназы и желатиназы в экстрактах остеоартрозного хряща человека.

J Rheumatol

1998

;

25

:

532

–5,80

Jauernig S, Schweighauser A, Reist M, Von Rechenberg B., Schawalder P, Spreng D. Влияние доксициклина на выработку оксида азота и стромелизина у собак с разрывом черепной крестообразной связки.

Вет Сург

2001

;

30

:

132

–9,81

де Бри Э, Лей В., Свенссон О., Чоудхури М., Моак С.А., Гринвальд Р.А. Влияние ингибитора матриксных металлопротеиназ на спонтанный остеоартрит у морских свинок.

Adv Dent Res

1998

;

12

:

82

–5,82

Ю Л.П. младший, Смит Г.Н. мл., Брандт К.Д., Майерс С.Л., О’Коннор Б.Л., Брандт Д.А. Уменьшение тяжести остеоартроза собак путем профилактического лечения пероральным доксициклином.

Arthritis Rheum

1992

;

35

:

1150

–9,83

Brandt KD, Mazzuca SA, Katz BP et al . Влияние доксициклина на прогрессирование остеоартрита: результаты рандомизированного плацебо-контролируемого двойного слепого исследования.

Arthritis Rheum

2005

;

52

:

2015

–25,84

Franchi-Micheli S, Lavacchi L, Friedmann CA, Ziletti L. Влияние реина на простагландиноподобные вещества in vitro .

J Pharm Pharmacol

1983

;

35

:

262

–4,85

Pomarelli P, Berti M, Gatti MT, Mosconi P. Нестероидный противовоспалительный препарат, который стимулирует высвобождение простагландинов.

Farmaco Ed Sci

1980

;

35

:

836

–42,86

Pelletier JP, Mineau F, Fernandes JC, Duval N, Martel-Pelletier J. Диацерхеин и реин снижают уровень и активность индуцибельного синтеза оксида азота, стимулированные интерлейкином 1beta, одновременно стимулируя синтез циклооксигеназы-2 у человека. остеоартрозные хондроциты.

J Rheumatol

1998

;

25

:

2417

–24,87

Тамура Т., Омори К. Диацереин подавляет увеличение оксида азота в плазме при артрите, индуцированном адъювантом у крыс.

евро J Pharmacol

2001

;

419

:

269

–74,88

Attur MG, Patel RN, Patel PD, Abramson SB, Amin AR. Тетрациклин усиливает экспрессию ЦОГ-2 и продукцию простагландина E 2 независимо от его воздействия на оксид азота.

J Immunol

1999

;

162

:

3160

–7.89

Патель Р.Н., Аттур М.Г., Дэйв М.Н. и др. . Новый механизм действия химически модифицированных тетрациклинов: ингибирование производства простагландина E2, опосредованного ЦОГ-2.

Иммунология

1999

;

163

:

3459

–67,90

Ярон М., Ширази И., Ярон И. Анти-интерлейкин-1 эффекты диацереина и реина в синовиальной ткани и культурах хрящей человека при остеоартрите.

Тележка для лечения артроза

1999

;

7

:

272

–80.91

Martel-Pelletier J, Mineau F, Jolicoeur FC, Cloutier JM, Pelletier JP. In vitro эффекты диацереина и реина на системы интерлейкина 1 и фактора некроза опухоли альфа в синовиальной оболочке и хондроцитах человека при остеоартрите.

J Rheumatol

1998

;

25

:

753

–62.92

Moldovan F, Pelletier JP, Jolicoeur FC, Cloutier JM, Martel-Pelletier J. Diacerhein и rhein снижают индуцированную ICE активацию IL-1beta и IL-18 в остеоартритическом хряще человека.

Тележка для лечения артроза

2000

;

8

:

186

–96,93

Мендес А.Ф., Карамона М.М., де Карвалью А.О., Лопес М.С. Диацереин и реин предотвращают индуцированную интерлейкином-1бета активацию ядерного фактора каппаВ, ингибируя деградацию ингибитора каппаВ-альфа.

Pharmacol Toxicol

2002

;

91

:

22

–8.94

Дозин Б., Мальпели М., Камарделла Л., Канседда Р., Пьетранджело А. Ответ молодых, пожилых и остеоартрозных суставных хондроцитов человека на воспалительные цитокины: молекулярные и клеточные аспекты.

Матрикс Биол

2002

;

21

:

449

–59,95

Boittin N, Redini F, Loyau G, Pujol JP. Влияние диацереина (ART 50) на синтез матрикса и секрецию коллагеназы культивированными хондроцитами суставов кроликов.

Rev Rhum

1993

;

60

:

68S

–76S.96

Tamura T., Kosaka N, Ishiwa J, Sato T, Nagase H, Ito A. Rhein, активный метаболит диацереина, подавляет продукцию проматричных металлопротеиназ-1 , -3, -9 и -13 и повышают продукцию тканевого ингибитора металлопротеиназы-1 в культивируемых суставных хондроцитах кролика.

Тележка для лечения артроза

2001

;

9

:

257

–63.97

Тамура Т., Омори К. Рейн, активный метаболит диацереина, подавляет индуцированную интерлейкином-1альфа деградацию протеогликана в культивируемых суставных хондроцитах кролика.

Jpn J Pharmacol

2001

;

85

:

101

–4,98

Фелисаз Н., Бумедьен К., Гайор С. и др. . Стимулирующее действие диацереина на экспрессию TGF-beta1 и beta2 в суставных хондроцитах, культивируемых с интерлейкином-1 и без него.

Тележка для лечения артроза

1999

;

7

:

255

–64,99

Mazieres B, Berdah L, Thiechart M, Viguier G. Diacetylrhein на постконтузионной модели экспериментального остеоартрита у кролика.

Rev Rhum

1993

;

60

:

77S

–81S.100

Тамура Т., Омори К., Накамура К. Влияние диацереина на спонтанный полиартрит у самцов новозеландских черных мышей / KN.

Тележка для лечения артроза

1999

;

7

:

533

–8.101

Carney SL. Влияние диацетилреина на развитие экспериментального остеоартроза. Биохимическое исследование.

Тележка для лечения артроза

1996

;

4

:

251

–61.102

Брандт К.Д., Смит Дж., Канг С.И., Майерс С., О’Коннор Б., Альбрехт Н. Эффекты диацереина в ускоренной модели остеоартрита у собак.

Тележка для лечения артроза

1997

;

5

:

438

–49.103

Смит Г. Н. мл., Майерс С. Л., Брандт К. Д., Миклер Э. А., Альбрехт М.Э.Лечение диацереином снижает тяжесть остеоартрита в модели остеоартрита с дефицитом крестообразных связок у собак.

Arthritis Rheum

1999

;

42

:

545

–54.104

Дугадос М., Нгуен М., Бердах Л., Мазьер Б., Лекесн М.; Исследовательская группа ECHODIAH. Оценка структурно-модифицирующих эффектов диацереина при остеоартрите тазобедренного сустава: ECHODIAH, трехлетнее плацебо-контролируемое исследование. Оценка хондромодулирующего эффекта диацереина при ОА бедра.

Arthritis Rheum

2001

;

44

:

2539

–47.105

Pham T, Le Henanff A, Ravaud P, Dieppe P, Paolozzi L., Dougados M. Оценка симптоматической и структурной эффективности нового соединения гиалуроновой кислоты, NRD101, по сравнению с диацереином и плацебо в 1-летнем рандомизированном контролируемом исследовании симптоматического остеоартрита коленного сустава.

Ann Rheum Dis

2004

;

63

:

1611

–7.106

Gouze JN, Bianchi A, Becuwe P et al .Глюкозамин модулирует индуцированную IL-1 активацию хондроцитов крысы на уровне рецепторов и путем ингибирования пути NF-каппа B.

FEBS Lett

2002

;

510

:

166

–70.107

Shikhman AR, Kuhn K, Alaaeddine N, Lotz M. N-ацетилглюкозамин предотвращает опосредованную IL-1 бета активацию хондроцитов человека.

J Immunol

2001

;

166

:

5155

–60.108

Largo R, Alvarez-Soria MA, Diez-Ortego I et al .Глюкозамин ингибирует индуцированную IL-1beta активацию NFkappaB в хондроцитах человека, страдающих остеоартритом.

Тележка для лечения артроза

2003

;

11

:

290

–8.109

Piperno M, Reboul P, Hellio Le Graverand MP et al . Сульфат глюкозамина модулирует дисрегулируемую активность хондроцитов человека, страдающих остеоартритом, in vitro .

Тележка для лечения артроза

2000

;

8

:

207

–12.110

Накамура Х., Шибакава А., Танака М., Като Т., Нисиока К.Влияние гидрохлорида глюкозамина на продукцию простагландина E2, оксида азота и металлопротеаз хондроцитами и синовиоцитами при остеоартрите.

Clin Exp Rheumatol

2004

;

22

:

293

–9.111

Gouze JN, Bordji K, Gulberti S et al . Интерлейкин-1beta подавляет экспрессию глюкуронозилтрансферазы I, ключевого фермента, запускающего биосинтез гликозаминогликанов: влияние глюкозамина на опосредованные интерлейкином-1beta эффекты в хондроцитах крыс.

Arthritis Rheum

2001

;

44

:

351

–60.112

Fenton JI, Chlebek-Brown KA, Caron JP, Orth MW. Влияние глюкозамина на интерлейкин-1 суставной хрящ.

Equine Vet J Suppl

2002

;

34

:

219

–23.113

Fenton JI, Chlebek-Brown KA, Peters TL, Caron JP, Orth MW. Глюкозамин HCl снижает деградацию суставного хряща лошади в культуре эксплантата.

Тележка для лечения артроза

2000

;

8

:

258

–65.114

Tung JT, Venta PJ, Eberhart SW, Yuzbasiyan-Gurkan V, Alexander L, Caron JP. Влияние препаратов против артрита на экспрессию генов и ферментативную активность циклооксигеназы-2 в культивируемых хондроцитах лошадей.

Am J Vet Res

2002

;

63

:

1134

–9.115

Dodge GR, Jimenez SA. Сульфат глюкозамина регулирует уровни аггрекана и матриксной металлопротеиназы-3, синтезируемые культивированными суставными хондроцитами человека, страдающими остеоартритом.

Тележка для лечения артроза

2003

;

11

:

424

–32.116

Sandy JD, Gamett D, Thompson V, Verscharen C. Опосредованный хондроцитами катаболизм аггрекана: аггреканазозависимое расщепление, индуцированное интерлейкином-1 или ретиноевой кислотой, может ингибироваться глюкозамином.

Biochem J

1998

;

335

:

59

–66.117

Патвари П., Курц Б., Сэнди Д.Д., Гродзинский А.Дж. Маннозамин подавляет опосредованные агреканазой изменения физических свойств и биохимического состава суставного хряща.

Arch Biochem Biophys

2000

;

374

:

79

–85.118

де Маттей М., Пеллати А., Паселло М. и др. . Высокие дозы глюкозамина-HCl оказывают пагубное воздействие на эксплантаты суставного хряща крупного рогатого скота, культивируемые in vitro .

Тележка для лечения артроза

2002

;

10

:

816

–25.119

Tiraloche G, Girard C, Chouinard L et al . Влияние перорального глюкозамина на деградацию хряща на кроличьей модели остеоартрита.

Arthritis Rheum

2005

;

52

:

1118

–28.120

Шихман А.Р., Амиэль Д., Д’Лима Д. и др. . Хондропротекторная активность N-ацетилглюкозамина у кроликов с экспериментальным остеоартрозом.

Ann Rheum Dis

2005

;

64

:

89

–94.121

Reginster JY, Deroisy R, Rovati LC et al . Долгосрочные эффекты сульфата глюкозамина на прогрессирование остеоартрита: рандомизированное плацебо-контролируемое клиническое исследование.

Ланцет

2001

;

357

:

251

–6.122

Pavelka K, Gatterova J, Olejarova M, Machacek S, Giacovelli G, Rovati LC. Использование сульфата глюкозамина и замедление прогрессирования остеоартрита коленного сустава: трехлетнее рандомизированное плацебо-контролируемое двойное слепое исследование.

Arch Intern Med

2002

;

162

:

2113

–23.123

Knudsen PJ, Dinarello CA, Strom TB. Глюкокортикоиды подавляют транскрипционную и посттранскрипционную экспрессию интерлейкина 1 в клетках U937.

J Immunol

1987

;

139

:

4129

–34.124

Ли С.В., Цоу А.П., Чан Х. и др. . Глюкокортикоиды избирательно подавляют транскрипцию гена интерлейкина 1 бета и снижают стабильность мРНК интерлейкина 1 бета.

Proc Natl Acad Sci USA

1988

;

85

:

1204

–8.125

Pelletier JP, Cloutier JM, Martel-Pelletier J. Влияние тиапрофеновой кислоты, салицилата натрия и гидрокортизона in vitro на метаболизм протеогликанов остеоартрозного хряща человека.

J Rheumatol

1989

;

16

:

646

–55,126

Hill DJ. Влияние кортизола на пролиферацию клеток, синтез и деградацию протеогликанов в хрящевых зонах реберно-хрящевой пластины роста теленка in vitro с активностью соматомедина плазмы крысы и без нее.

J Endocrinol

1981

;

88

:

425

–35,127

Такигава М., Такано Т., Накагава К., Сакуда М., Судзуки Ф. Стимуляция пролиферации гидрокортизоном и синтеза гликозаминогликанов в черепно-лицевых хондроцитах кролика in vitro .

Arch Oral Biol

1988

;

33

:

893

–9,128

Макгуайр М.Б., Мерфи М., Рейнольдс Дж. Дж., Рассел Р.Г.Г. Производство коллагеназы и ингибитора (ТИМП) нормальной, ревматоидной и остеоартритической синовиальной оболочкой in vitro : эффекты гидрокортизона и индометацина.

Clin Biol

1981

;

61

:

703

–10.129

Пеллетье Дж. П., Мартель-Пеллетье Дж. Деградация хряща нейтральными протеогликаназами при экспериментальном остеоартрите.

Подавление стероидами. Arthritis Rheum

1985

;

28

:

1393

–401.130

Martel-Pelletier J, Cloutier JM, Pelletier JP. Нейтральные протеазы синовиальной оболочки при остеоартрите человека.

Arthritis Rheum

1986

;

29

:

1112

–21.131

Pelletier JP, Martel-Pelletier J, Cloutier JM, Woessner JF Jr. Активность кислой металлопротеиназы, разрушающей протеогликаны, в хрящах остеоартрита человека и эффекты внутрисуставных инъекций стероидов.

Arthritis Rheum

1987

;

30

:

541

–8.132

Pelletier JP, Mineau F, Raynauld JP, Woessner JF, Gunja-Smith Z, Martel-Pelletier J. Внутрисуставные инъекции метилпреднизолона ацетата уменьшают остеоартритические поражения параллельно с синтезом хондроцитарного стромелизина.

Arthritis Rheum

1994

;

37

:

414

–23.133

Itagane Y, Inada H, Fujita K, Isshiki G.Взаимодействие между стероидными гормонами и инсулиноподобным фактором роста-I в хондроцитах кролика.

Эндокринология

1991

;

128

:

1419

–24.134

Van der Kraan PM, Vitters EL, Postma NS, Verbunt J, van den Berg WB. Поддержание синтеза крупных протеогликанов в анатомически неповрежденном суставном хряще мыши с помощью стероидов и инсулиноподобного фактора роста I.

Ann Rheum Dis

1993

;

52

:

734

–41.135

Van Osch GJ, van der Veen SW, Verwoerd-Verhoef HL. In vitro повторная дифференцировка выращенных в культуре кроличьих и человеческих аурикулярных хондроцитов для реконструкции хряща.

Plast Reconstr Surg

2001

;

107

:

433

–40,136

Коломбо С., Батлер М., Хикман Л., Селвин М., Диаграмма J, Стейнец Б. Новая модель остеоартрита у кроликов. II. Оценка антиостеоартрозных эффектов выбранных противоревматических препаратов, применяемых системно.

Arthritis Rheum

1983

;

26

:

1132

–9.137

Батлер М., Коломбо С., Хикман Л. и др. . Новая модель остеоартроза у кроликов. III. Оценка антиостеоартрозных эффектов выбранных препаратов, вводимых внутрисуставно.

Arthritis Rheum

1983

;

26

:

1380

–6,138

Williams JM, Brandt KD. Гексацетонид триамцинолона защищает от фибрилляции и образования остеофитов после химически индуцированного повреждения суставного хряща.

Arthritis Rheum

1985

;

28

:

1267

–74.139

Пеллетье Дж. П., Мартель-Пеллетье Дж. Защитные эффекты кортикостероидов на повреждения хряща и образование остеофитов в модели остеоартрита у собак Понд-Нуки.

Arthritis Rheum

1989

;

32

:

181

–93.140

Wang J, Elewaut D, Hoffman I., Veys EM, Verbruggen G. Физиологические уровни гидрокортизона поддерживают оптимальный метаболизм внеклеточного матрикса хондроцитов.

Ann Rheum Dis

2004

;

63

:

61

–6.141

Бреннан Ф.М., Чантри Д., Джексон А., Майни Р., Фельдманн М. Ингибирующее действие антител ФНО-альфа на выработку интерлейкина-1 синовиальными клетками при ревматоидном артрите.

Ланцет

1989

;

2

:

244

–7.142

Lipsky PE, van der Heijde DM, St Clair EW et al . Инфликсимаб и метотрексат в лечении ревматоидного артрита.

Исследовательская группа по исследованию противоопухолевого фактора некроза при ревматоидном артрите с сопутствующей терапией.N Engl J Med

2000

;

343

:

1594

–602.143

Смолен Дж. С., Хан С., Бала М. и др. .; Исследовательская группа ATTRACT. Доказательства радиографической пользы лечения инфликсимабом плюс метотрексат у пациентов с ревматоидным артритом, у которых не было клинического улучшения: подробный субанализ данных исследования противоопухолевого фактора некроза при ревматоидном артрите с исследованием сопутствующей терапии.

Arthritis Rheum

2005

;

52

:

1020

–30.144

Круитхоф Э., Ван ден Бош Ф., Баетен Д. и др. . Повторные инфузии инфликсимаба, химерного моноклонального антитела против TNFalpha, пациентам с активной спондилоартропатией: наблюдение в течение одного года.

Ann Rheum Dis

2002

;

61

:

207

–12.145

Verbruggen G, Veys EM. Системы числовой оценки анатомической эволюции остеоартроза суставов пальцев.

Arthritis Rheum

1996

;

39

:

308

–20.

© Автор 2005. Опубликовано Oxford University Press от имени Британского общества ревматологов. Все права защищены. Для получения разрешений обращайтесь по электронной почте: [email protected]

.

Хондропротекторы при дегенеративных заболеваниях суставов | Ревматология

Аннотация

Катаболические пути цитокинов и анаболических факторов роста контролируют разрушение и восстановление при остеоартрите (ОА).Однонаправленный каскад цитокинов, управляемый TNF-α / IL-1, нарушает гомеостаз внеклеточного матрикса суставного хряща при ОА. Хотя хондроциты в хряще OA сверхэкспрессируют анаболический инсулиноподобный фактор роста (IGF) и его специфический рецептор (IGFRI), аутокринный TNF-α, высвобождаемый апоптозными клетками суставного хряща, запускает каскад, управляемый ауто / паракринным IL-1, который перекрывает активность фактора роста которые поддерживают восстановление при дегенеративных заболеваниях суставов. Хондропротекция с повторным появлением исчезнувшей суставной щели была безошибочно задокументирована в периферических суставах пациентов, страдающих спондилоартропатией, при лечении агентами, блокирующими TNF-α, которые подавляли однонаправленный цитокиновый каскад, управляемый TNF-α / IL-1.Серия агентов, модифицирующих структуру соединительной ткани (CTSMA), которые непосредственно влияют на синтез ИЛ-1 и высвобождают in vitro и снижают модулирующие характеристики нижерасположенного ИЛ-1, например активности коллагеназы, протеогликаназы и матриксной металлопротеиназы, экспрессия индуцибельной синтазы оксида азота, повышенное высвобождение оксида азота и секреция простагландина E 2 , IL-6 и IL-8, как было показано, обладают модифицирующим заболевание OA активность лекарственного средства (DMOAD) в экспериментальных моделях ОА и у людей с ОА суставов пальцев и коленей.Примерами являются кортикостероиды, некоторые сульфатированные полисахариды, химически модифицированные тетрациклины, диацетилреин / реин, глюкозамин и неомыляемые вещества авокадо / сои.

Утрата функции является следствием анатомических изменений тканей суставов при остеоартрозе (ОА). Вмешательство в анатомическое развитие ОА, по-видимому, является методом сохранения нормальной функции суставов. Вещества, которые защищают суставной хрящ во время ОА, получили название хондрозащитных средств.Когда кажется, что они изменяют течение заболевания, эти агенты могут быть названы лекарствами, модифицирующими течение болезни, (DMOAD) [1]. Боль в суставах при остеоартрите объясняется различными причинами, вторичными по отношению к анатомическим изменениям, например: воспалительные явления в синовиальной оболочке и субхондральная внутрикостная гипертензия из-за венозного застоя. В этом обзоре будут рассмотрены аспекты хондропротекторной терапии DMOAD, а не облегчение клинических симптомов, которые в конечном итоге могут возникнуть при назначении пациентам терапии DMOAD.

Гомеостаз внеклеточного матрикса здорового суставного хряща

Гомеостаз внеклеточного матрикса (ЕСМ) суставного хряща зависит от реакции клеток суставного хряща на ауто- и паракринные анаболические и катаболические пути. Наиболее важные факторы роста и цитокины, которые, как известно, участвуют в метаболизме хрящей, вырабатываются самими хондроцитами [2, 3]. Синтез и накопление ЕСМ регулируется местно продуцируемыми факторами роста, такими как инсулиноподобные факторы роста (IGF) и трансформирующий фактор роста-β (TGF-β).Специфическая регуляторная роль TGF-β была предложена при патологических условиях [4], и большое количество экспериментальных данных подтвердило важность IGF-1 как промотора роста и синтеза матрикса хондроцитами в здоровом суставном хряще. IGF-1 усиливает синтез аггрекана клетками или эксплантами суставного хряща [5-10] и in vivo и на животных моделях [11]. Оборот и деградация матрикса зависят от реакции клетки суставного хряща на катаболические цитокины, из которых IL-1α и β являются основными агонистами [12, 13].Было показано, что помимо своей способности вызывать деградацию суставного хряща, IL-1 подавляет синтез аггрекана и коллагена хондроцитами [14, 15]. Это снижение продукции соединений ЕСМ частично опосредовано ИЛ-1-индуцированным образованием оксида азота (NO) [16]. Эффекты IL-1 опосредуются высокоаффинным рецептором клеточной поверхности (IL-1RI) [17, 18]. Важными контролирующими факторами активности IL-1 являются белки, относящиеся к семейству рецепторов IL-1, среди которых рецептор-ловушка IL-1 типа 2 (IL-1RII) экспрессируется на плазматической мембране хондроцитов и связывает IL-1α и β, но не не передавать сигналы ИЛ-1 [19, 20].Интересно, что IGF, как было показано, активирует рецептор-ловушку IL-1 IL-1RII, тем самым обращая активность IL-1 [21]. Это открытие согласуется с наблюдением, что IGF-1 непосредственно снижает как базальную, так и стимулируемую цитокинами деградацию [22] и депрессию основного вещества суставного хряща [21]. Таким образом, повышая регуляцию IL-1RII, IGF-1 защищает ECM хряща от индуцированного IL-1 разрушения (рис. 1A).

Рис. 1.

Пути IL-1 / IGF, контролирующие обмен внеклеточного матрикса (ECM) в (A) здоровом хряще, (B) OA хряще и (C) OA хряще, когда проводится репрессивная терапия IL-1.(A) Активность IL-1 контролируется IGF-1 в нормальном хряще. Через повышающую регуляцию IL-1RII IGF-1 защищает ECM хряща от индуцированного IL-1 разрушения. (B) Считается, что при ОА TNF-α, высвобождаемый апоптозными клетками суставного хряща, вызывает выделение IL-1RII и запускает каскад, управляемый ауто / паракринным IL-1, что приводит к резорбции ECM. По неизвестным причинам хондроциты в хряще OA сверхэкспрессируют анаболическую активность фактора роста IGF-1 / IGF-RI. (C) Подавление активности IL-1 в хрящевых клетках, которые сверхэкспрессируют IGF-1, приводит к восстановлению ECM.

Рис. 1.

Пути IL-1 / IGF, контролирующие обмен внеклеточного матрикса (ECM) в (A) здоровом хряще, (B) хряще OA и (C) хряще OA, когда проводится репрессивная терапия IL-1. (A) Активность IL-1 контролируется IGF-1 в нормальном хряще. Через повышающую регуляцию IL-1RII IGF-1 защищает ECM хряща от индуцированного IL-1 разрушения. (B) Считается, что при ОА TNF-α, высвобождаемый апоптозными клетками суставного хряща, вызывает выделение IL-1RII и запускает каскад, управляемый ауто / паракринным IL-1, что приводит к резорбции ECM.По неизвестным причинам хондроциты в хряще OA сверхэкспрессируют анаболическую активность фактора роста IGF-1 / IGF-RI. (C) Подавление активности IL-1 в хрящевых клетках, которые сверхэкспрессируют IGF-1, приводит к восстановлению ECM.

Патология метаболических путей цитокинов и факторов роста, принимаемых ОА

Сообщалось о повышении регуляции как катаболических [2, 3, 23, 24], так и анаболических [2, 3, 23–26] путей в хондроцитах и ​​хрящах при ОА. Корреляция с возникновением и степенью патологии ОА была отмечена для ИЛ-1β [2, 3, 27], и эти повышенные уровни катаболических цитокинов воплощены в хорошо документированном увеличении активности металлопротеиназ, которые были выше в хряще ОА по сравнению с морфологически нормальными. хрящ из того же сустава [27–30].Кроме того, в хондроцитах ОА было обнаружено увеличение плотности рецепторов IL-1RI по сравнению с нормальными хондроцитами. Уровни мРНК и белка IGF-1 и его рецептора IGFRI были значительно выше в фибриллированном хряще OA, чем в нефибриллированном хряще OA тазобедренного и коленного суставов [23, 26]. Самые сильные сигналы сообщения IGF-1 или уровни белка наблюдались в хондроцитах более продвинутых поражений [23, 26]. Когда сравнивали клетки, полученные из нормальной ткани и ткани ОА из одних и тех же коленных суставов человека, ассоциированный с клетками аггрекан и коллаген типа II были значительно уменьшены вокруг хондроцитов, полученных из патологической ткани.Одновременно хондроциты из фибриллированного хряща OA экспрессировали значительно более высокие внутриклеточные уровни IL-1α и β и повышали уровень IL-1RI, связанный с плазматической мембраной. В то же время наблюдались значительно более высокие уровни внутриклеточного IGF-1 и IGF-R1, связанного с плазматической мембраной. Неожиданно оказалось, что в присутствии этой повышенной активности IGF экспрессия связанного с плазматической мембраной рецептора-ловушки IL-1RII была снижена в хондроцитах OA [26]. Снижение уровней рецептора-ловушки IL-1RII плазматической мембраны на хондроцитах ОА может быть связано с вмешательством других аутокринных цитокиновых путей.В этом контексте было показано, что TNF-α вызывает быстрое выделение IL-1RII из мембран миеломоноцитарных клеток [31, 32]. Подобный эффект TNF-α на клетки суставного хряща еще предстоит продемонстрировать. Однако присутствие TNF-α в хрящах, подвергшихся механическому повреждению, неоднократно подтверждалось примерами. Травма суставных хондроцитов вызывает апоптоз [33, 34], а апоптоз опосредуется аутокринным путем TNF [35, 36]. Повышенная активность TGF-β в хряще OA [37–39], вызывающая понижающую модуляцию передачи сигналов IL-1RI [40], может частично компенсировать потери IL-1RII, вызванные ауто / паракринной активностью TNF-α.Однако если необходимо идентифицировать метаболические пути цитокинов и факторов роста, TNF-α и IL-1β и их сигнальные рецепторы являются основными кандидатами (рис. 1B).

Агенты, модифицирующие структуру соединительной ткани (CTSMA), и лекарственные средства от остеоартрита, модифицирующие заболевание (DMOAD)

Первые попытки улучшить структуру и функцию соединительной ткани синовиальных суставов, тем самым облегчить симптомы дегенеративных заболеваний суставов, были основаны на расплывчатых предположениях о том, что обильное введение предшественников компонентов внеклеточного матрикса поможет клеткам суставного хряща восполнить утраченную среду. .Это предположение побудило врачей использовать такие вещества, как глюкозамин и сульфат или гликозаминогликаны, с целью улучшения восстановления хряща при дегенеративных заболеваниях суставов. Аналогичным образом, первое внутрисуставное введение полисульфата хондроитина было основано на предположении, что этот препарат гепариноидного типа заменит гиалуронан в качестве лубриканта и снизит уровень фибриногена в воспаленных суставах, и что это даст терапевтическое преимущество [41, 42]. Неожиданно некоторые пациенты сообщили об облегчении симптомов после прохождения этой процедуры, и даже сообщалось о некоторых изменениях в химическом составе синовиальной жидкости [43].

Наряду с глубоким поиском механизмов, посредством которых ткани суставов разрушаются в ходе воспалительных или дегенеративных заболеваний суставов, исследователи более методично искали биологические агенты, способные восстанавливать поврежденные соединительные ткани. Поскольку суставной хрящ является одной из основных тканей-мишеней, поражаемых в ходе ревматических заболеваний суставов, многие исследования были сосредоточены на метаболических характеристиках единственной клетки, находящейся в этой ткани: хондроцита. Вещества, защищающие суставной хрящ при деструктивных заболеваниях суставов, получили название хондрозащитных средств.Когда это произошло in vivo в суставах с остеоартритом, эти агенты были названы лекарствами от остеоартрита, модифицирующими заболевание (DMOAD) [1].

Поскольку ауто / паракринный фактор роста и каскады цитокинов, лежащие в основе развития, гомеостаза и разрушения внеклеточного матрикса суставного хряща, ранее не были известны, первые исследования биологических агентов, способных изменять структуру соединительной ткани в положительную сторону, в основном были сосредоточены на от способности этих агентов улучшать синтез или ухудшать разложение соединений ЕСМ, e.грамм. аггрекан и коллаген. Согласно этому определению, ряд веществ можно классифицировать как вещества, модифицирующие структуру соединительной ткани (CTSMA). Среди них неоднократно упоминались сульфатированные гликозаминогликаны и глюкозамин, химически модифицированные тетрациклины, такие как доксициклин и миноциклин, диацетилреин и его активный метаболит реин, а также неомыляемые вещества авокадо / сои.

Сульфатные полисахариды и хондрозащита

Среди первых веществ, способных улучшать накопление соединений ЕСМ, были так называемые хондромукопротеины [44–46], смесь продуктов деградации протеогликанов, в которых присутствовал хондроитинсульфат.Затем была выдвинута гипотеза, что продукты распада ВКМ, содержащие хондроитинсульфат, каким-то образом оказывают положительную обратную связь на хондроциты суставного хряща. Возможность вмешательства сульфатированных полисахаридов в процессы восстановления клеток соединительной ткани in vitro была впервые описана в середине 1970-х годов [47, 48]. Позже было показано, что полисульфат хондроитинсульфата улучшает синтез гиалуронана в синовиальных суставах in vivo у людей [49]. Тот же препарат, а также его природный аналог, хондроитинсульфат, улучшали функцию репарации хондроцитов in vivo в различных экспериментальных моделях остеоартрита [50–53].Недавно рандомизированные двойные слепые плацебо-контролируемые терапевтические испытания привели к выводу, что эти CTSMA обладают свойствами DMOAD, поскольку они, как было показано, замедляют прогрессирование эрозивного ОА в межфаланговых суставах пальцев [54, 55] и ОА коленного сустава. у человека [56–58].

In vitro и in vivo эксперименты в различных исследовательских центрах, посвященные влиянию на метаболизм молекул межклеточного матрикса (протеогликаны, аггреканы, гиалуронан), показали, что большинство (поли) сульфатированных полисахаридов влияют на клетки соединительной ткани (хрящевые клетки, синовиальные клетки, фибробласты) аналогичным образом [48, 59–61].С улучшением нашего понимания ауто / паракринного фактора роста и цитокиновых путей, которые контролируют гомеостаз здоровых соединительных тканей, стало возможным изучить механизм действия этих CTSMA. Недавние исследования сульфатированных полисахаридов показали, что эти агенты действуют в биологических системах, подавляя важные катаболические ауто / паракринные цитокиновые пути, такие как IL-1, тем самым улучшая накопление соединений ECM в клеточно-ассоциированном матриксе этих клеток.Эксперименты с бычьими хрящевыми клетками, полученными из макроскопически интактных пястно-фаланговых суставов, показали, что физиологические концентрации полисульфата хондроитина значительно снижают нижестоящие эффекты IL-1, такие как активность коллагеназы, протеогликаназы и матриксной металлопротеиназы (MMP) -1 и MMP-3 [62]. Кроме того, полисульфат хондроитина ингибировал индуцированную IL-1 экспрессию мРНК тканевого активатора плазминогена (tPA) [62]. Аналогичным образом, полисульфат ксилозана и полисульфат хондроитина восстанавливали накопление аггрекана, гиалуронана и коллагена типа II в клеточно-ассоциированном матриксе в обработанных IL-1β хондроцитах человека, культивируемых в агарозе.Этот эффект, вероятно, является частично результатом подавления MMPs [63]. Кроме того, в культивируемых хондроцитах лошадей полисульфат хондроитина значительно снижал экспрессию индуцибельной синтазы оксида азота (iNOS), усиленную IL-1β, что сопровождалось повышенным высвобождением NO. Хондроитинполисульфат снижает концентрацию нитрита в супернатантах этих IL-1β-стимулированных культур [64]. Наконец, новый полисульфатированный полисахарид, полисульфат циклодекстрина, продемонстрировал эффекты модификации структуры хряща in vitro , поскольку он улучшал синтез аггрекана и накопление связанных с клетками макромолекул матрикса клетками суставного хряща человека в альгинате.Здесь впервые было показано, что этот эффект частично является результатом прямой репрессии IL-1, поскольку клетки, обработанные полисульфатом циклодекстрина, экспрессируют значительно меньшие количества внутриклеточных IL-1α и β [65]. Те же обработанные β-циклодекстрином хондроциты высвобождали значительно меньше ИЛ-6 в супернатантную культуральную среду, эффект, который, как известно, является результатом ауто / паракринной стимуляции ИЛ-1 [65]. Следует напомнить, что концентрации полисахаридов в супернатантах культур в большинстве описанных экспериментов in vitro и уровни полисахаридов в плазме или хрящевой ткани, полученные у людей после перорального введения, были одного порядка [66–68].

Неомыляемые вещества из авокадо / сои

Сообщалось, что неомыляемые вещества авокадо / сои подавляют катаболическую активность хондроцитов и увеличивают накопление протеогликана хондроцитами ОА в культуре. Неомыляемые вещества из авокадо / сои были мощными ингибиторами основной продукции ММР-3 хондроцитами ОА и продукции IL-6, IL-8, NO и простагландина E 2 (PGE 2 ) [69]. Все эти биологические активности зависят от ИЛ-1 и выражены в хондроцитах ОА.Точно так же неомыляемые вещества из авокадо / сои обращали вспять эффекты IL-1β в фибробластах десен из воспаленных тканей [70]. Эффекты этих экстрактов, подавляющие IL-1, защищали подкожно имплантированный хрящ от деградации [71]. In vivo Эффекты DMOAD после введения неомыляемых веществ из авокадо / сои были описаны в модели менискэктомии у овец [72] и, возможно, в человеческом OA бедра [73].

Химически модифицированные тетрациклины

Было показано, что химически модифицированные тетрациклины, такие как доксициклин и миноциклин, непосредственно ингибируют активность протеаз и коллагеназ [74].Тетрациклины также могут косвенно подавлять эту катаболическую активность, поскольку, как сообщалось, они снижают уровни мРНК коллагеназ в изолированных хондроцитах ОА. Кроме того, доксициклин ингибировал увеличение мРНК этих ферментов в нормальных хондроцитах, стимулированных TNF-α [75]. Аналогичным образом, хондроциты, выделенные из хряща OA человека и обработанные доксициклином, показали значительное ингибирование белка матриксной металлопротеиназы и соответствующих уровней мРНК, что указывает на транскрипционный / посттранскрипционный уровень контроля.Кроме того, лечение доксициклином привело к значительному снижению уровня мРНК IL-1α, β и IL-6 [76].

Прямое ингибирование таких цитокинов могло быть ответственным за снижение активности синтазы оксида азота в синовиальных клетках ОА [77]. Тетрациклины обращали как спонтанную, так и индуцированную IL-1β активность NOS в ex vivo условиях в тканях OA человека. Было обнаружено, что механизм действия этих препаратов на экспрессию NOS, по крайней мере частично, находится на уровне экспрессии РНК и трансляции фермента [78].

Вероятно, что снижение активности коллагеназы и желатиназы в экстрактах хрящей остеоартрита человека после перорального введения этих тетрациклинов человеку [79], а также открытие, что доксициклин ингибирует продукцию NO в хряще у собак, у которых развился ОА после спонтанного разрыв передней крестообразной связки [80], возможно, был приписан ингибированию активности ауто / паракринных катаболических цитокинов. Скорее всего, это ингибирование каскадов катаболических цитокинов было ответственно за «хондропротекторные» эффекты при воспалительных артритах на животных моделях.Профилактические доксициклины и химически модифицированные варианты, вводимые перорально, снижали изменения ОА в коленных суставах in vivo у морских свинок Хартли, которые имеют высокую частоту ОА коленных суставов [81], и заметно снижали тяжесть ОА в областях, несущих нагрузку. медиального мыщелка бедренной кости при экспериментальном ОА у взрослых беспородных собак [82]. Совсем недавно было показано, что лечение доксициклином в дозе 100 мг два раза в день в течение 30 месяцев снижает скорость сужения суставной щели в коленях с установленным остеоартритом в группе женщин с ожирением [83].

диацетилреин

В отличие от других CTSMA, которые ингибируют NO [64, 69, 77, 78, 107, 110–113] и продукцию простаноидов [69, 108, 110–112, 114], активный метаболит диацетилреина, реин не снижает, но, по-видимому, стимулирует синтез простагландинов in vitro [84, 85] и in vivo [86]. Этот механизм действия диацетилреина по увеличению экспрессии циклооксигеназы (COX) -2 и продукции PGE 2 , независимо от их ингибирования эндогенного NO [85, 87], аналогичен таковому у тетрациклинов, например.грамм. доксициклин и миноциклин, которые ингибируют индуцибельную NO-синтазу и увеличивают экспрессию ЦОГ-2 [88, 89]. Rhein и тетрациклины являются родственными химическими структурами в том смысле, что эти соединения возникают в результате реакций замещения полиядерных углеводородов: антрацена и нафтацена соответственно. Реин и тетрациклины обладают структурным сходством (рис. 2).

Рис. 2.

Райн, активный метаболит диацетилреина, и тетрациклин обладают структурным сходством.

Рис. 2.

Райн, активный метаболит диацетилреина, и тетрациклин обладают структурным сходством.

Подобно тетрациклинам, диацетилреин / реин подавлял экспрессию ИЛ-1 в активированных липополисахаридами хондроцитах ОА человека [90] и синовиальных клетках [91]. Эксперименты на изолированных хондроцитах суставного хряща и на эксплантатах хрящевой ткани показали, что это нарушение высвобождения активного ИЛ-1 частично связано с ингибированием фермента, преобразующего ИЛ-1 (ICE) плазматической мембраны.Судя по отсутствию влияния на уровень экспрессии генов обоих белков, действие диацетилреина / реина на IL-1β и ICE должно было быть посттрансляционным [92]. Понижающая модуляция активной продукции IL-1 сопровождалась ингибированием активации NFκB [93] и, следовательно, экспрессии IL-1 / NFκB-зависимых генов в этих клетках [90, 91, 93]. Блокирующие нижестоящие события IL-1 включали снижение продукции NO, стромелизина-1 [91, 94] и коллагеназы, а также провоспалительных IL-6, -8 и -18 в IL-1α и TNF-α активированных монослойных культивируемых суставных хондроцитах человека из ОА суставов [92, 94].Аналогичным образом, реин подавлял индуцированную IL-1 экспрессию генов proMMP-1, -3, -9 и -13 и их активности, а также повышал продукцию тканевого ингибитора металлопротеиназы 1 (TIMP-1) в монослое культивированных суставные хондроциты кролика. Следовательно, в этих клетках сообщалось об увеличении выработки гликозаминогликанов и коллагена наряду со снижением деградации протеогликана [95–97]. Это улучшенное наращивание матрикса могло быть усилено увеличением экспрессии изоформ TGF-β в хондроцитах, обработанных диацетилреином [98].Все эти результатов in vitro были получены с концентрациями диацетилреина / реина, сравнимыми с терапевтическими уровнями в плазме. Можно разумно предположить, что блокирование ИЛ-1 диацетилреином / реином было ответственно за некоторые эффекты DMOAD, наблюдаемые при экспериментальном ОА у животных, например при ушибе индуцированного разрушения хряща надколенника кролика [99] и при спонтанно развивающемся полиартрите у мышей NZB / KN [100]. Хотя это не согласуется с улучшением биохимии суставного хряща [101–103], сравнимая хондрозащита наблюдалась в различных моделях ОА собак, если судить по макроскопическим повреждениям хряща [102, 103].

Эти эффекты DMOAD были подтверждены в двух рандомизированных двойных слепых плацебо-контролируемых исследованиях. Двести шестьдесят девять пациентов с первичным ОА бедра завершили трехлетнее исследование, получая диацетилреин в дозе 50 мг два раза в день или плацебо. Процент пациентов с рентгенологическим прогрессированием, определяемым как потеря суставной щели не менее 0,5 мм, был значительно ниже у пациентов, получавших диацетилреин, чем у пациентов, получавших плацебо. У этих пациентов частота сужения суставной щели была дискретной, но значительно ниже, чем в группе плацебо [104].Эти результаты были подтверждены в другом 1-летнем проспективном рандомизированном двойном слепом плацебо-контролируемом исследовании 301 пациента с радиологическим медиальным ОА коленного сустава [105].

Глюкозамин

Место глюкозамина как CTSMA или DMOAD остается спорным. Тот факт, что этот аминосахар долгое время назывался «сульфатом глюкозамина», вызвал путаницу. Препарат, использованный в ряде экспериментов in vitro и in vivo , не был сложным эфиром сульфата глюкозамина, а оказался препаратом, в котором глюкозамин и сульфат присутствовали в виде двух отдельных молекул в кристаллической форме.Если какие-либо эффекты CTSMA приписываются «сульфату глюкозамина», в настоящее время считается, что активным ингредиентом является моносахарид. В серии экспериментов с изолированными IL-1β-активированными хондроцитами в культуре, где использовались гексозамины, сообщалось о влиянии на последующие события IL-1. Добавление глюкозамина к хондроцитам крысы, обработанным IL-1β, уменьшало активацию фактора транскрипции NFκB, но не белка-активатора-1 [106]. Глюкозамин, но не N, -ацетилглюкозамин или другие моносахариды [107], значительно ингибировал активность NFκB в хондроцитах ОА человека, а также ядерную транслокацию белков p50 и p65 [108].Глюкозамин снижал активность фосфолипазы A2 [109], уровни мРНК и белка ЦОГ-2 [107, 108, 110] и высвобождение PGE 2 [108, 110–114] в клетках суставного хряща различного происхождения. Сходным образом аминосахар снижает продукцию iNOS и NO хондроцитами [107, 110–113] и индуцирует IL-1 металлопротеиназную и коллагеназную активности в супернатантах культур хондроцитов [109–113, 115]. Заметное ингибирование аггреканазозависимого расщепления аггрекана наблюдалось как с клетками крысы, так и с эксплантами крупного рогатого скота при добавлении глюкозамина [116] и маннозамина [117].Ингибирование не было связано с вмешательством в передачу сигналов IL-1, и точный механизм, с помощью которого гексозамины функционируют в этой системе, неясен. Вмешательство в активность ферментов привело к снижению катаболизма ВКМ в этих культурах хондроцитов [113]. Кроме того, сообщалось, что гексозамины улучшают синтез макромолекул ECM в IL-1-репрессированных хрящевых клетках [106, 111, 112, 115]. Большинство цитируемых экспериментов проводилось на нормальных хондроцитах, хондроцитах или хрящевых эксплантатах, примированных IL-1.Редко использовались нативные хондроциты ОА [109, 115]. Основная проблема с исследованиями in vitro , проведенными до сих пор, — это концентрации гексозаминов, используемых в этих экспериментах. Обычно пациентам с ОА ежедневно вводят 1500 мг глюкозамина (20 мг / кг у субъекта массой 75 кг). Эти предписанные количества в лучшем случае обеспечивают концентрацию гексозамина в плазме 0,15–0,30 мМ у среднестатистического европейца. Два из вышеупомянутых экспериментальных исследований были проведены с концентрациями глюкозамина в этом диапазоне [115, 117].Остальные были сделаны с использованием нефизиологических уровней глюкозамина в питательной среде в диапазоне от 0,56 до 139,66 мМ [106–113, 116], условий, в которых ингибирование катаболических эффектов, вызванных IL1β, могло быть связано с токсичностью глюкозамина [118].

Актуальность результатов in vitro , полученных с супрафизиологическими дозами глюкозамина, остается спорным, поскольку ежедневное введение ~ 20 мг / кг глюкозамина пероральным путем кроликам, у которых выполнялось перерезание передней крестообразной связки, имело только обнаруживаемый участок. -специфический, частичный модифицирующий болезнь эффект в этой модели ОА.Введение глюкозамина не предотвращало фибрилляцию и / или эрозию суставного хряща у обработанных животных [119]. Кроме того, парентеральное введение 200 мг / кг N-ацетил-глюкозамина на кроличьей модели экспериментального ОА коленного сустава не показало хондропротекторных эффектов [120]. Механизм действия, с помощью которого этот гексозамин, таким образом, мог повлиять на эволюцию одной человеческой популяции с ОА коленного сустава [121, 122], таким образом, еще предстоит выяснить. Принимая во внимание отсутствие хондрозащиты в экспериментальных животных моделях ОА, подтверждение хондропротекторных эффектов глюкозамина в человеческой популяции было бы ценным.

Кортикостероиды и ИЛ-1

Гомеостаз ВКМ клетками суставного хряща зависит от контроля ауто / паракринных катаболических каскадов, индуцированных ИЛ-1 [21]. Множество эндокринных гормонов и факторов роста способны контролировать эту активность IL-1. Классически сообщалось, что кортикостероиды напрямую влияют на синтез ИЛ-1 [123, 124]. Как показано на культурах хрящевых эксплантатов, кортикостероидные гормоны в физиологических дозах ингибируют деградацию внеклеточного матрикса [125–127].Это ингибирование пути IL-1 привело к снижению патологической активности нейтральных протеаз в хрящевой ткани [128–132]. Помимо того факта, что кортикостероиды действуют синергетически с различными основными факторами роста и дифференцировки, влияя на синтез основного вещества внеклеточного матрикса [133–135], антикатаболические эффекты кортикостероидов, по крайней мере, частично объясняют защитные эффекты на хрящ ОА однократного или периодического действия. местное или системное введение физиологических доз кортикостероидов в различных моделях экспериментально индуцированного ОА, таких как модель менискэктомированного кролика [136, 137], при химически индуцированном повреждении хряща у морской свинки [138] и в модели собаки Паунда-Нуки. ОА [132, 139].Подобные защитные эффекты этих препаратов наблюдались на хрящах остеоартрита у людей [131]. Это подавление IL-1 физиологическими дозами кортикостероидов вместе с повышающей регуляцией рецептора IGF-1 в конечном итоге привело к накоплению соединений ECM в непосредственном окружении хрящевых клеток in vitro [63, 140] .

Защита и регенерация суставного хряща с помощью блокаторов цитокинов: доказательство концепции

Совсем недавно были зарегистрированы драматические хондропротекторные эффекты у пациентов с РА и деструктивным артритом, ассоциированным со спондилоартропатией (СПА).У этих пациентов TNF-α, высвобождаемый в синовиальной мембране, запускает катаболический ауто / паракринный путь IL-1 хондроцитов в соседнем суставном хряще [141]. Результирующий каскад ауто / паракринного IL-1 будет вызывать разрушение внеклеточного матрикса суставного хряща. Лечение пациентов с РА рекомбинантными белками, поглощающими TNF-α, подавляет активность IL-1 хондроцитов и останавливает эрозивную прогрессию, продолжающуюся в течение этих воспалительных заболеваний [142]. Нейтрализация TNF-α при RA в конечном итоге приводит к очевидному восстановлению пораженных суставов [143].Повторное появление исчезнувшей суставной щели было зарегистрировано при периферическом артрите, связанном с СПА [144, 145] (рис. 3). Сходным образом при ОА ауто / паракринный TNF-α, возникающий в результате апоптоза хондроцитов [31–34] после чрезмерного механического стресса, вызывает индуцированное IL-1 разрушение внеклеточной среды суставного хряща. Насколько подобное блокирование TNF-α может привести к остановке прогрессирования этого заболевания, еще не изучено.

Рис.3.

Хондрозащита и регенерация суставного хряща блокаторами цитокинов. (A) Тазобедренный сустав пациента с анкилозирующим спондилитом до (слева) и после 1 года лечения инфликсимабом, блокирующим TNF-α моноклональным антителом. Прекращено развитие эрозии, вновь появилась суставная щель. (B) Такое же течение наблюдалось в третьем проксимальном межфаланговом суставе и втором дистальном межфаланговом суставе пациента, страдающего псориатическим артритом. Эти записи были получены после завершения серии проспективных рандомизированных плацебо-контролируемых исследований, одобренных местным комитетом по этике, в которые были включены 107 пациентов для изучения влияния инфликсимаба на клинические признаки спондилоартропатии [144]. , Ван дер Бош, представлен].Рентгеновские снимки пораженных суставов были сделаны при поступлении и через 1 год наблюдения. (C) При эрозивном ОА межфалангового сустава пальца подобный тип ремоделирования происходит спонтанно после прекращения деструктивного эпизода. Четыре рентгеновских снимка были сделаны с интервалом в 1 год [145].

Рис. 3.

Хондропротекция и регенерация суставного хряща цитокиноблокаторами. (A) Тазобедренный сустав пациента с анкилозирующим спондилитом до (слева) и после 1 года лечения инфликсимабом, блокирующим TNF-α моноклональным антителом.Прекращено развитие эрозии, вновь появилась суставная щель. (B) Такое же течение наблюдалось в третьем проксимальном межфаланговом суставе и втором дистальном межфаланговом суставе пациента, страдающего псориатическим артритом. Эти записи были получены после завершения серии проспективных рандомизированных плацебо-контролируемых исследований, одобренных местным комитетом по этике, в которые были включены 107 пациентов для изучения влияния инфликсимаба на клинические признаки спондилоартропатии [144]. , Ван дер Бош, представлен].Рентгеновские снимки пораженных суставов были сделаны при поступлении и через 1 год наблюдения. (C) При эрозивном ОА межфалангового сустава пальца подобный тип ремоделирования происходит спонтанно после прекращения деструктивного эпизода. Четыре рентгеновских снимка были сделаны с интервалом в 1 год [145].

Обсуждение

Идентичные пути цитокинов и факторов роста контролируют разрушение и восстановление при ОА и воспалительных заболеваниях суставов, таких как RA и SPA-ассоциированный артрит. Однонаправленные каскады цитокинов, управляемые TNF-α / IL-1, нарушают гомеостаз ECM суставного хряща при этих нарушениях.TNF-α, происходящий из синовиальной мембраны, запускает каскад во время воспалительных патологий, в то время как при ОА аутокринный TNF-α, высвобождаемый апоптозными клетками суставного хряща, вызывает активность IL-1. Как при воспалительных, так и при дегенеративных состояниях, каскады цитокинов, управляемые TNF-α / IL-1, преобладают над путями факторов роста, способствующих анаболической репарации. Однако, когда биологические препараты, блокирующие TNF-α, вводили при иммунологически опосредованных воспалительных артритах, безошибочно было продемонстрировано восстановление тканей.В СПА зафиксировано повторное появление ранее исчезнувшей суставной щели.

Точно так же репрессия каскадов цитокинов, управляемых TNF-α / IL-1, должна позволить репарации стать еще более очевидной при ОА, поскольку пути анаболического фактора роста также сверхэкспрессируются в этом состоянии. Было показано, что кортикостероиды, отдельные классы (поли) сульфатированных полисахаридов, тетрациклины, диацетилреин / реин, авокадо / соевые бобы и глюкозамин подавляют IL-1 и, по-видимому, подавляют нижестоящие характеристики IL-1, например.грамм. активность коллагеназы, протеогликаназы и ММП, экспрессия iNOS и повышенное высвобождение NO, а также выделение PGE 2 , IL-6 и IL-8. За исключением кортикостероидов и диацетилреина, эти агенты не продемонстрировали стимуляции активности фактора роста. Все эти CTSMA, способные напрямую влиять на синтез и высвобождение IL-1 in vitro , как было показано, обладают активностью DMOAD в экспериментальных моделях ОА и в популяциях людей с ОА коленных и пальцевых суставов.Эффекты DMOAD глюкозамина in vivo остаются несколько спорными, поскольку концентрации гексозаминов, которые были эффективны в экспериментах in vitro , никогда не были достигнуты при системном введении аминосахаров экспериментальным животным или людям. Фармакологическое усиление факторов, способствующих репарации, например Ожидается, что TGF-β и / или IGF-1 не сильно повлияют на изменение заболевания при ОА. Пути анаболического восстановления уже чрезмерно выражены при этом заболевании.Этим объясняется затяжной характер ОА и очевидные признаки ремоделирования тканей сустава ОА.

Поскольку однонаправленный каскад цитокинов, управляемый TNF-α / IL-1, был идентифицирован как лекарственная мишень при ОА, простые лабораторные процедуры позволят обнаружить новую серию CTSMA с активностями DMOAD.

Авторы заявили об отсутствии конфликта интересов.

Список литературы

1

Altman RD, Hochberg MC, Moskowitz RW, Schnitzer TJ.Рекомендации по медикаментозному лечению остеоартроза тазобедренного и коленного суставов. Обновление 2000 года. Подкомитет ACR по рекомендациям по остеоартриту.

Arthritis Rheum

2000

;

43

:

1905

–15,2

Chambers MG, Bayliss MT, Mason RM. Экспрессия цитокинов хондроцитов и факторов роста при остеоартрите мышей.

Тележка для лечения артроза

1997

;

5

:

301

–8.3

Моос В., Фикерт С., Мюллер Б., Вебер Ю., Сипер Дж.Иммуногистологический анализ экспрессии цитокинов при остеоартрите человека и здоровом хряще.

J Rheumatol

1999

;

26

:

870

–9,4

van Beuningen HM, van der Kraan PM, Arntz OJ, van den Berg WB. Защита от интерлейкина 1 индуцировала разрушение суставного хряща путем трансформации фактора роста бета: исследования на анатомически неповрежденном хряще in vitro и in vivo .

Ann Rheum Dis

1993

;

52

:

185

–91.5

Guenther HL, Guenther HE, Froesch ER, Fleisch H. Влияние инсулиноподобного фактора роста на синтез коллагена и гликозаминогликанов суставными хондроцитами кролика в культуре.

Experientia

1982

;

38

:

979

–81,6

McQuillan DL, Handley CJ, Campbell MA, Bolis S, Milway VE, Herington AC. Стимуляция синтеза протеогликана сывороткой и инсулиноподобным фактором роста-1 в культивируемом суставном хряще крупного рогатого скота.

Biochem J

1986

;

240

:

423

–30.7

Luyten FP, Hascall VC, Nissley SP, Morales TI, Reddi AH. Инсулиноподобные факторы роста поддерживают стабильный метаболизм протеогликанов в эксплантатах суставного хряща крупного рогатого скота.

Arch Biochem Biophys

1988

;

267

:

416

–25,8

Tesch GH, Handley CJ, Cornell HJ, Herington AC. Влияние свободных и связанных инсулиноподобных факторов роста на метаболизм протеогликанов в эксплантатах суставного хряща.

J Orthop Res

1992

;

10

:

14

–22.9

Verbruggen G, Malfait AM, Dewulf M, Broddelez C, Veys EM. Стандартизация питательных сред для изолированных суставных хондроцитов человека в гелеобразной суспензионной культуре агарозы.

Тележка для лечения артроза

1995

;

3

:

249

–59,10

Yaeger PC, Masi TL, de Ortiz JL, Binette F, Tubo R, McPherson JM. Синергетическое действие трансформирующего фактора роста-бета и инсулиноподобного фактора роста-I индуцирует экспрессию генов коллагена и аггрекана типа II в суставных хондроцитах взрослого человека.

Exp Cell Res

1997

;

237

:

318

–25,11

Verschure PJ, van Marle J, Joosten LA, van den Berg WB. Экспрессия хондроцитарного рецептора IGF-1 и реакция на стимуляцию IGF-1 в суставном хряще мыши во время различных фаз экспериментально индуцированного артрита.

Ann Rheum Dis

1995

;

54

:

645

–53,12

Саклатвала Дж., Пилсворт LMC, Сарсфилд С.Дж., Гравилович Дж., Хит Дж. К.. Катаболин свиньи — это форма интерлейкина 1.

Biochem J

1984

;

224

:

461

–6,13

Дингл Дж. Т., Саклатвала Дж., Хембри Р., Тайлер Дж., Фелл Х. Б., Джубб Р. Катаболический фактор хряща из синовиальной оболочки.

Biochem J

1979

;

184

:

177

–80,14

Dingle JT. Влияние синовиального катаболина на синтетическую активность хряща.

Connect Tiss Res

1984

;

12

:

277

–86,15

Тайлер Дж. А., Саклатвала Дж.Свиной ИЛ-1 (катаболин) вызывает резорбцию протеогликана хряща и предотвращает синтез протеогликана и коллагена.

Br J Rheumatol

1985

;

24 (Дополнение 1)

:

150

–5,16

Таскиран Д., Стефанович-Рачич М., Георгеску Х.И., Эванс Ч. Оксид азота опосредует подавление синтеза протеогликанов хряща интерлейкином-1.

Biochem Biophys Res Commun

1994

;

200

:

142

–8,17

Берд Т.А., Саклатвала Дж.Идентификация общего класса рецепторов с высоким сродством для обоих типов интерлейлина-1 на клетках соединительной ткани.

Nature

1986

;

324

:

263

–6,18

Чандрасекхар С., Харви А.К. Индукция рецепторов интерлейкина-1 на хондроцитах фактором роста фибробластов: возможный механизм модуляции активности интерлейкина-1.

J Cell Physiol

1989

;

138

:

236

–46,19

Colotta F, Re F, Muzio M et al .Рецептор интерлейкина-1 типа II: мишень-приманка для IL-1, которая регулируется IL-4.

Наука

1993

;

261

:

472

–5.20

Аттур М.Г., Дэйв М., Чиполлетта С. и др. . Обращение аутокринных и паракринных эффектов интерлейкина 1 (ИЛ-1) при артрите человека с помощью рецептора-ловушки ИЛ-1 типа II. Возможность фармакологического вмешательства.

J Biol Chem

2000

;

275

:

40307

–1521

Wang J, Elewaut D, Veys EM, Verbruggen G.Индуцированный инсулиноподобным фактором роста 1 рецептор интерлейкина-1 II подавляет активность интерлейкина-1 и контролирует гомеостаз внеклеточного матрикса хряща.

Arthritis Rheum

2003

;

48

:

1281

–91,22

Тайлер Дж.А. Инсулиноподобный фактор роста 1 может уменьшать деградацию и способствовать синтезу протеогликана в хряще, подвергающемся действию цитокинов.

Biochem J

1989

;

260

:

543

–8.23

Миддлтон Дж. Ф., Тайлер Дж. А. Повышение экспрессии гена инсулиноподобного фактора роста I в поражениях суставного хряща человека при остеоартрите.

Ann Rheum Dis

1992

;

51

:

440

–7,24

Миддлтон Дж., Манти А., Тайлер Дж. Рецептор инсулиноподобного фактора роста (ИФР), ИФР-I, интерлейкин-1 бета (ИЛ-1 бета) и экспрессия мРНК ИЛ-6 при остеоартрите и нормальном хряще человека.

J Histochem Cytochem

1996

;

44

:

133

–41.25

Verschure PJ, Marle JV, Joosten LA, Helsen MM, Lafeber FP, Berg WB. Локализация рецептора инсулиноподобного фактора роста-1 в нормальном и остеоартрозном хрящах человека в отношении синтеза и содержания протеогликана.

Br J Rheumatol

1996

;

35

:

1044

–55,26

Ван Дж., Вердонк П., Элеваут Д., Вейс Е.М., Вербрюгген Г. Гомеостаз внеклеточного матрикса нормальных и остеоартрозных хондроцитов суставного хряща человека in vitro.

Тележка для лечения артроза

2003

;

11

:

801

–9.27

Шлопов Б.В., Гумановская М.Л., Поспешный К.А. Аутокринная регуляция коллагеназы 3 (матриксная металлопротеиназа 13) при остеоартрите.

Arthritis Rheum

2000

;

43

:

195

–205.28

Pelletier JP, Martel-Pelletier J, Howell DS, Ghandur-Mnaymneh L, Enis JE, Woessner JF Jr. Коллагеназа и коллагенолитическая активность в остеоартритическом хряще человека.

Arthritis Rheum

1983

;

26

:

63

–8.29

Okada Y, Shinmei M, Tanaka O et al .Локализация матриксной металлопротеиназы 3 (стромелизина) в остеоартрозном хряще и синовиальной оболочке.

Lab Invest

1992

;

66

:

680

–90,30

Arner EC, Tortorella MD. Передача сигнала через рецепторы интегрина хондроцитов индуцирует синтез металлопротеиназы матрикса и действует синергично с интерлейкином-1.

Arthritis Rheum

1995

;

38

:

1304

–14,31

Орландо С., Сирони М., Бьянки Г. и др. .Роль металлопротеаз в высвобождении рецептора-ловушки IL-1 типа II.

J Biol Chem

1997

;

272

:

31764

–9,32

Penton-Rol G, Orlando S, Polentarutti N et al . Бактериальный липополисахарид вызывает быстрое выделение с последующим ингибированием экспрессии мРНК рецептора IL-1 типа II с сопутствующей активацией рецептора типа I и индукцией не полностью сплайсированных транскриптов.

J Immunol

1999

;

162

:

2931

–8.33

D’Lima DD, Hashimoto S, Chen PC, Colwell CW Jr, Lotz MK. Апоптоз хондроцитов человека в ответ на механическое повреждение.

Тележка для лечения артроза

2001

;

9

:

712

–9,34

Редман С.Н., Даутуэйт Г.П., Томсон Б.М., Арчер CW. Клеточные реакции суставного хряща на резкую и тупую травму.

Тележка для лечения артроза

2004

;

12

:

106

–16.35

Айзава Т., Кон Т., Эйнхорн Т.А., Герстенфельд Л.С.Индукция апоптоза хондроцитов фактором некроза опухоли-α.

J Orthop Res

2001

;

19

:

785

–96,36

Islam N, Haqqi TM, Jepsen KJ et al . Гидростатическое давление индуцирует апоптоз в хондроцитах человека из остеоартрозного хряща за счет усиления фактора некроза опухоли-α, индуцибельной синтазы оксида азота, p53, c-myc и bax-alpha, а также подавления bcl-2.

J Cell Biochem

2002

;

87

:

266

–78.37

Моос В., Фикерт С., Мюллер Б., Вебер Ю., Сипер Дж. Иммуногистологический анализ экспрессии цитокинов в человеческом остеоартрите и здоровом хряще.

J Rheumatol

1999

;

26

:

870

–9.38

Verdier MP, Seite S, Guntzer K, Pujol JP, Boumediene K. Иммуногистохимический анализ бета-изоформ трансформирующего фактора роста и их рецепторов в хряще человека из нормальных и остеоартрозных головок бедренной кости.

Rheumatol Int

2005

;

25

:

118

–24.39

Четина Е.В., Сквайрс Дж., Пул А.Р. Усиленная деградация коллагена II типа и очень ранняя очаговая дегенерация хряща связаны с активацией генов, связанных с дифференцировкой хондроцитов, в ранних поражениях суставного хряща человека.

J Ревматол

2005

;

32

:

876

–86,40

Harvey AK, Hrubey PS, Chandrasekhar S. Ингибирование активности интерлейкина-1 трансформирующим фактором роста бета включает подавление рецепторов интерлейкина-1 на хондроцитах.

Exp Cell Res

1991

;

195

:

376

–85.41

Эйлау О. Внутрисуставная гепариновая терапия истинного деформирующего артроза коленного сустава.

Мед Клин

1959

;

54

:

145

.42

Эйлау О. О патогенезе и причинном лечении артроза коленного сустава.

Мед Клин

1960

;

55

:

2367

–70,43

Momburg M, Stuhlsatz HW, Vogeli H, Vojtisek O, Eylau O, Greiling H.Клинические химические изменения в синовиальной жидкости после внутрисуставной инъекции полисульфата гликозаминогликана.

Z Rheumatol

1976

;

35 (Приложение 4)

:

389

–90,44

Нево З., Хорвиц А.Л., Дорфман А. Синтез хондромукопротеина хондроцитами в суспензионной культуре.

Дев Биол

1972

;

28

:

219

–28,45

Нево З., Дорфман А. Стимуляция синтеза хондромукопротеина в хондроцитах внеклеточным хондромукопротеином.

Proc Natl Acad Sci USA

1972

;

69

:

2069

–72,46

Kosher RA, Lash JW, Minor RR. Экологическое усиление хондрогенеза in vitro.

Дев Биол

1973

;

35

:

210

–20,47

Шварц Н.Б., Дорфман А. Стимуляция продукции хондроитинсульфат-протеогликана хондроцитами в монослое.

Conn Tiss Res

1975

;

3

:

115

–22,48

Verbruggen G, Veys EM.Влияние сульфатированных гликозаминогликанов на метаболизм протеогликанов в клетках синовиальной оболочки.

Acta Rheumatol

1977

;

1

:

75

–92,49

Verbruggen G, Veys EM. Влияние гиперсульфатированного гепариноида на метаболизм гиалуроната синовиальной клетки человека in vivo .

J Rheumatol

1979

;

6

:

554

–61,50

Kalbhen DA. Экспериментальное подтверждение противоартритной активности полисульфата гликозаминогликана.

Z Ревматол

1983

;

42

:

178

–84,51

Carreno MR, Muniz OE, Howell DS. Эффект гликозаминогликана сложного эфира полисерной кислоты на суставной хрящ при экспериментальном остеоартрите: влияние на морфологические переменные тяжести заболевания.

J Rheumatol

1986

;

13

:

490

–7,52

Бреннан Дж. Дж., Ахерн FX, Накано Т. Влияние лечения полисульфатом гликозаминогликана на прочность, содержание гиалуроновой кислоты в синовиальной жидкости и протеогликановый агрегат в суставном хряще хромых хряков.

Can J Vet Res

1987

;

51

:

394

–8,53

Убельхарт Д., Тонар Э. Дж., Чжан Дж., Уильямс Дж. М.. Защитный эффект экзогенного хондроитин-4,6-сульфата при острой деградации суставного хряща у кролика.

Тележка для лечения артроза

1998

;

6 (Дополнение A)

:

6

–13,54

Verbruggen G, Goemaere S, Veys EM. Хондроитинсульфат: S / DMOAD (лекарственное средство против остеоартрита, изменяющее структуру / заболевание) при лечении остеоартрита суставов пальцев.

Тележка для лечения артроза

1998

;

6 (Дополнение A)

:

37

–8,55

Verbruggen G, Goemaere S, Veys EM. Системы для оценки прогрессирования остеоартрита суставов пальцев и эффектов лекарств, влияющих на лечение остеоартрита.

Clin Rheumatol

2002

;

21

:

231

–43,56

Убельхарт Д., Тонар Э. Дж., Дельмас П. Д., Шантрейн А., Виньон Э. Влияние перорального хондроитинсульфата на прогрессирование остеоартрита коленного сустава: пилотное исследование.

Тележка для лечения артроза

1998

;

6 (Дополнение A)

:

39

–46,57

Убельхарт Д., Малез М., Марколонго Р. и др. . Прерывистое лечение остеоартрита коленного сустава пероральным хондроитинсульфатом: однолетнее рандомизированное двойное слепое многоцентровое исследование по сравнению с плацебо.

Тележка для лечения артроза

2004

;

12

:

269

–76,58

Мишель Б.А., Штуки Г., Фрей Д. и др. . Хондроитины 4 и 6 сульфат при остеоартрозе коленного сустава: рандомизированное контролируемое исследование.

Arthritis Rheum

2005

;

52

:

779

–86,59

Verbruggen G, Veys EM. Внутрисуставная инъекция пентозанполисульфата приводит к увеличению молекулярной массы гиалуронана в суставной жидкости.

Clin Exp Rheumatol

1992

;

10

:

249

–54,60

Francis DJ, Hutadilok N, Kongtawelert P, Ghosh P. Полисульфат пентозана и полисульфат гликозаминогликана стимулируют синтез гиалуронана in vivo .

Rheumatol Int

1993

;

13

:

61

–4,61

Verbruggen G, Cornelissen M, Elewaut D, Broddelez C., De Ridder L., Veys EM. Влияние полисульфатированных полисахаридов на аггреканы, синтезируемые дифференцированными суставными хондроцитами человека.

J Rheumatol

1999

;

26

:

1663

–71,62

Sadowski T., Steinmeyer J. Влияние полисульфатированного гликозаминогликана и триамцинолона ацетонида на продукцию протеиназ и их ингибиторов обработанными IL-1alpha суставными хондроцитами.

Biochem Pharmacol

2002

;

64

:

217

–27.63

Ван Л., Ван Дж., Альмквист К.Ф., Вейс Е.М., Вербругген Г. Влияние полисульфатированных полисахаридов и гидрокортизона на метаболизм внеклеточного матрикса суставных хондроцитов человека in vitro.

Clin Exp Rheumatol

2002

;

20

:

669

–76,64

Tung JT, Venta PJ, Caron JP. Индуцируемая экспрессия оксида азота в суставных хондроцитах лошади: эффекты противовоспалительных соединений.

Тележка для лечения артроза

2002

;

10

:

5

–12,65

Verdonk P, Wang J, Elewaut D, Broddelez C, Veys EM, Verbruggen G. Полисульфаты циклодекстрина усиливают восстановление внеклеточного матрикса хондроцитов человека.

Тележка для лечения артроза

2005

;

13

:

887

–95.66

Muller W., Panse P, Brand S, Staubli A. Исследование in vivo распределения, сродства к хрящам и метаболизма полисульфата гликозаминогликана (GAGPS, Arteparon).

Z Ревматол

1983

;

42

:

355

–61.67

Volpi N. Пероральное всасывание и биодоступность хондроитинсульфата ихтикового происхождения у здоровых добровольцев мужского пола.

Тележка для лечения артроза

2003

;

11

:

433

–41,68

Volpi N. Биодоступность хондроитинсульфата (Кондросульф) и его компонентов при пероральном введении у здоровых добровольцев мужского пола.

Тележка для лечения артроза

2002

;

10

:

768

–77.69

Хенротин Ю.Е., Санчес С., Деберг М.А. и др. . Неомыляемые вещества авокадо / соевые бобы увеличивают синтез аггрекана и снижают выработку катаболических и провоспалительных медиаторов хондроцитами человека при остеоартрите.

J Ревматол

2003

;

30

:

1825

–34,70

Kut-Lasserre C, Miller CC, Ejeil AL et al . Влияние неомыляемых веществ авокадо и сои на желатиназу A (MMP-2), стромелизин 1 (MMP-3) и тканевые ингибиторы секреции матриксной металлопротеиназы (TIMP-1 и TIMP-2) фибробластами человека в культуре.

J Periodontol

2001

;

72

:

1685

–94,71

Хайял MT, Эль-Газали, Массачусетс. Возможный «хондрозащитный» эффект неомыляемых компонентов авокадо и сои in vivo .

Drugs Exp Clin Res

1998

;

24

:

41

–50.72

Cake MA, Read RA, Guillou B., Ghosh P. Модификация патологии суставного хряща и субхондральной кости в модели остеоартрита менискэктомии у овец неомыляемыми веществами авокадо и сои (ASU).

Тележка для лечения артроза

2000

;

8

:

404

–11.73

Lequesne M, Maheu E, Cadet C, Dreiser RL. Структурное влияние неомыляемых веществ авокадо / сои на потерю суставной щели при остеоартрозе тазобедренного сустава.

Arthritis Rheum

2002

;

47

:

50

–8,74

Yu LP Jr, Smith GN Jr, Hasty KA, Brandt KD. Доксициклин подавляет коллагенолитическую активность XI типа экстрактов из хрящей остеоартрита человека и желатиназы.

J Rheumatol

1991

;

18

:

1450

–2,75

Шлопов Б.В., Смит Г.Н. мл., Коул А.А., Хэсти К.А. Дифференциальные паттерны ответа на доксициклин и трансформирующий фактор роста бета1 при подавлении коллагеназ в остеоартрите и нормальных хондроцитах человека.

Arthritis Rheum

1999

;

42

:

719

–27,76

Шлопов Б.В., Стюарт Ю.М., Гумановская М.Л., Спешка К.А. Регулирование коллагеназы хряща доксициклином.

J Ревматол

2001

;

28

:

835

–42,77

Borderie D, Hernvann A, Hilliquin P, Lemarchal H, Kahan A, Ekindjian OG. Тетрациклины подавляют выработку нитрозотиола цитокин-стимулированными синовиальными клетками остеоартрита.

Inflamm Res

2001

;

50

:

409

–14,78

Amin AR, Attur MG, Thakker GD et al . Новый механизм действия тетрациклинов: эффекты на синтазы оксида азота.

Proc Natl Acad Sci USA

1996

;

93

:

14014

–9,79

Smith GN Jr, Yu LP Jr, Brandt KD, Capello WN. Пероральный прием доксициклина снижает активность коллагеназы и желатиназы в экстрактах остеоартрозного хряща человека.

J Rheumatol

1998

;

25

:

532

–5,80

Jauernig S, Schweighauser A, Reist M, Von Rechenberg B., Schawalder P, Spreng D. Влияние доксициклина на выработку оксида азота и стромелизина у собак с разрывом черепной крестообразной связки.

Вет Сург

2001

;

30

:

132

–9,81

де Бри Э, Лей В., Свенссон О., Чоудхури М., Моак С.А., Гринвальд Р.А. Влияние ингибитора матриксных металлопротеиназ на спонтанный остеоартрит у морских свинок.

Adv Dent Res

1998

;

12

:

82

–5,82

Ю Л.П. младший, Смит Г.Н. мл., Брандт К.Д., Майерс С.Л., О’Коннор Б.Л., Брандт Д.А. Уменьшение тяжести остеоартроза собак путем профилактического лечения пероральным доксициклином.

Arthritis Rheum

1992

;

35

:

1150

–9,83

Brandt KD, Mazzuca SA, Katz BP et al . Влияние доксициклина на прогрессирование остеоартрита: результаты рандомизированного плацебо-контролируемого двойного слепого исследования.

Arthritis Rheum

2005

;

52

:

2015

–25,84

Franchi-Micheli S, Lavacchi L, Friedmann CA, Ziletti L. Влияние реина на простагландиноподобные вещества in vitro .

J Pharm Pharmacol

1983

;

35

:

262

–4,85

Pomarelli P, Berti M, Gatti MT, Mosconi P. Нестероидный противовоспалительный препарат, который стимулирует высвобождение простагландинов.

Farmaco Ed Sci

1980

;

35

:

836

–42,86

Pelletier JP, Mineau F, Fernandes JC, Duval N, Martel-Pelletier J. Диацерхеин и реин снижают уровень и активность индуцибельного синтеза оксида азота, стимулированные интерлейкином 1beta, одновременно стимулируя синтез циклооксигеназы-2 у человека. остеоартрозные хондроциты.

J Rheumatol

1998

;

25

:

2417

–24,87

Тамура Т., Омори К. Диацереин подавляет увеличение оксида азота в плазме при артрите, индуцированном адъювантом у крыс.

евро J Pharmacol

2001

;

419

:

269

–74,88

Attur MG, Patel RN, Patel PD, Abramson SB, Amin AR. Тетрациклин усиливает экспрессию ЦОГ-2 и продукцию простагландина E 2 независимо от его воздействия на оксид азота.

J Immunol

1999

;

162

:

3160

–7.89

Патель Р.Н., Аттур М.Г., Дэйв М.Н. и др. . Новый механизм действия химически модифицированных тетрациклинов: ингибирование производства простагландина E2, опосредованного ЦОГ-2.

Иммунология

1999

;

163

:

3459

–67,90

Ярон М., Ширази И., Ярон И. Анти-интерлейкин-1 эффекты диацереина и реина в синовиальной ткани и культурах хрящей человека при остеоартрите.

Тележка для лечения артроза

1999

;

7

:

272

–80.91

Martel-Pelletier J, Mineau F, Jolicoeur FC, Cloutier JM, Pelletier JP. In vitro эффекты диацереина и реина на системы интерлейкина 1 и фактора некроза опухоли альфа в синовиальной оболочке и хондроцитах человека при остеоартрите.

J Rheumatol

1998

;

25

:

753

–62.92

Moldovan F, Pelletier JP, Jolicoeur FC, Cloutier JM, Martel-Pelletier J. Diacerhein и rhein снижают индуцированную ICE активацию IL-1beta и IL-18 в остеоартритическом хряще человека.

Тележка для лечения артроза

2000

;

8

:

186

–96,93

Мендес А.Ф., Карамона М.М., де Карвалью А.О., Лопес М.С. Диацереин и реин предотвращают индуцированную интерлейкином-1бета активацию ядерного фактора каппаВ, ингибируя деградацию ингибитора каппаВ-альфа.

Pharmacol Toxicol

2002

;

91

:

22

–8.94

Дозин Б., Мальпели М., Камарделла Л., Канседда Р., Пьетранджело А. Ответ молодых, пожилых и остеоартрозных суставных хондроцитов человека на воспалительные цитокины: молекулярные и клеточные аспекты.

Матрикс Биол

2002

;

21

:

449

–59,95

Boittin N, Redini F, Loyau G, Pujol JP. Влияние диацереина (ART 50) на синтез матрикса и секрецию коллагеназы культивированными хондроцитами суставов кроликов.

Rev Rhum

1993

;

60

:

68S

–76S.96

Tamura T., Kosaka N, Ishiwa J, Sato T, Nagase H, Ito A. Rhein, активный метаболит диацереина, подавляет продукцию проматричных металлопротеиназ-1 , -3, -9 и -13 и повышают продукцию тканевого ингибитора металлопротеиназы-1 в культивируемых суставных хондроцитах кролика.

Тележка для лечения артроза

2001

;

9

:

257

–63.97

Тамура Т., Омори К. Рейн, активный метаболит диацереина, подавляет индуцированную интерлейкином-1альфа деградацию протеогликана в культивируемых суставных хондроцитах кролика.

Jpn J Pharmacol

2001

;

85

:

101

–4,98

Фелисаз Н., Бумедьен К., Гайор С. и др. . Стимулирующее действие диацереина на экспрессию TGF-beta1 и beta2 в суставных хондроцитах, культивируемых с интерлейкином-1 и без него.

Тележка для лечения артроза

1999

;

7

:

255

–64,99

Mazieres B, Berdah L, Thiechart M, Viguier G. Diacetylrhein на постконтузионной модели экспериментального остеоартрита у кролика.

Rev Rhum

1993

;

60

:

77S

–81S.100

Тамура Т., Омори К., Накамура К. Влияние диацереина на спонтанный полиартрит у самцов новозеландских черных мышей / KN.

Тележка для лечения артроза

1999

;

7

:

533

–8.101

Carney SL. Влияние диацетилреина на развитие экспериментального остеоартроза. Биохимическое исследование.

Тележка для лечения артроза

1996

;

4

:

251

–61.102

Брандт К.Д., Смит Дж., Канг С.И., Майерс С., О’Коннор Б., Альбрехт Н. Эффекты диацереина в ускоренной модели остеоартрита у собак.

Тележка для лечения артроза

1997

;

5

:

438

–49.103

Смит Г. Н. мл., Майерс С. Л., Брандт К. Д., Миклер Э. А., Альбрехт М.Э.Лечение диацереином снижает тяжесть остеоартрита в модели остеоартрита с дефицитом крестообразных связок у собак.

Arthritis Rheum

1999

;

42

:

545

–54.104

Дугадос М., Нгуен М., Бердах Л., Мазьер Б., Лекесн М.; Исследовательская группа ECHODIAH. Оценка структурно-модифицирующих эффектов диацереина при остеоартрите тазобедренного сустава: ECHODIAH, трехлетнее плацебо-контролируемое исследование. Оценка хондромодулирующего эффекта диацереина при ОА бедра.

Arthritis Rheum

2001

;

44

:

2539

–47.105

Pham T, Le Henanff A, Ravaud P, Dieppe P, Paolozzi L., Dougados M. Оценка симптоматической и структурной эффективности нового соединения гиалуроновой кислоты, NRD101, по сравнению с диацереином и плацебо в 1-летнем рандомизированном контролируемом исследовании симптоматического остеоартрита коленного сустава.

Ann Rheum Dis

2004

;

63

:

1611

–7.106

Gouze JN, Bianchi A, Becuwe P et al .Глюкозамин модулирует индуцированную IL-1 активацию хондроцитов крысы на уровне рецепторов и путем ингибирования пути NF-каппа B.

FEBS Lett

2002

;

510

:

166

–70.107

Shikhman AR, Kuhn K, Alaaeddine N, Lotz M. N-ацетилглюкозамин предотвращает опосредованную IL-1 бета активацию хондроцитов человека.

J Immunol

2001

;

166

:

5155

–60.108

Largo R, Alvarez-Soria MA, Diez-Ortego I et al .Глюкозамин ингибирует индуцированную IL-1beta активацию NFkappaB в хондроцитах человека, страдающих остеоартритом.

Тележка для лечения артроза

2003

;

11

:

290

–8.109

Piperno M, Reboul P, Hellio Le Graverand MP et al . Сульфат глюкозамина модулирует дисрегулируемую активность хондроцитов человека, страдающих остеоартритом, in vitro .

Тележка для лечения артроза

2000

;

8

:

207

–12.110

Накамура Х., Шибакава А., Танака М., Като Т., Нисиока К.Влияние гидрохлорида глюкозамина на продукцию простагландина E2, оксида азота и металлопротеаз хондроцитами и синовиоцитами при остеоартрите.

Clin Exp Rheumatol

2004

;

22

:

293

–9.111

Gouze JN, Bordji K, Gulberti S et al . Интерлейкин-1beta подавляет экспрессию глюкуронозилтрансферазы I, ключевого фермента, запускающего биосинтез гликозаминогликанов: влияние глюкозамина на опосредованные интерлейкином-1beta эффекты в хондроцитах крыс.

Arthritis Rheum

2001

;

44

:

351

–60.112

Fenton JI, Chlebek-Brown KA, Caron JP, Orth MW. Влияние глюкозамина на интерлейкин-1 суставной хрящ.

Equine Vet J Suppl

2002

;

34

:

219

–23.113

Fenton JI, Chlebek-Brown KA, Peters TL, Caron JP, Orth MW. Глюкозамин HCl снижает деградацию суставного хряща лошади в культуре эксплантата.

Тележка для лечения артроза

2000

;

8

:

258

–65.114

Tung JT, Venta PJ, Eberhart SW, Yuzbasiyan-Gurkan V, Alexander L, Caron JP. Влияние препаратов против артрита на экспрессию генов и ферментативную активность циклооксигеназы-2 в культивируемых хондроцитах лошадей.

Am J Vet Res

2002

;

63

:

1134

–9.115

Dodge GR, Jimenez SA. Сульфат глюкозамина регулирует уровни аггрекана и матриксной металлопротеиназы-3, синтезируемые культивированными суставными хондроцитами человека, страдающими остеоартритом.

Тележка для лечения артроза

2003

;

11

:

424

–32.116

Sandy JD, Gamett D, Thompson V, Verscharen C. Опосредованный хондроцитами катаболизм аггрекана: аггреканазозависимое расщепление, индуцированное интерлейкином-1 или ретиноевой кислотой, может ингибироваться глюкозамином.

Biochem J

1998

;

335

:

59

–66.117

Патвари П., Курц Б., Сэнди Д.Д., Гродзинский А.Дж. Маннозамин подавляет опосредованные агреканазой изменения физических свойств и биохимического состава суставного хряща.

Arch Biochem Biophys

2000

;

374

:

79

–85.118

де Маттей М., Пеллати А., Паселло М. и др. . Высокие дозы глюкозамина-HCl оказывают пагубное воздействие на эксплантаты суставного хряща крупного рогатого скота, культивируемые in vitro .

Тележка для лечения артроза

2002

;

10

:

816

–25.119

Tiraloche G, Girard C, Chouinard L et al . Влияние перорального глюкозамина на деградацию хряща на кроличьей модели остеоартрита.

Arthritis Rheum

2005

;

52

:

1118

–28.120

Шихман А.Р., Амиэль Д., Д’Лима Д. и др. . Хондропротекторная активность N-ацетилглюкозамина у кроликов с экспериментальным остеоартрозом.

Ann Rheum Dis

2005

;

64

:

89

–94.121

Reginster JY, Deroisy R, Rovati LC et al . Долгосрочные эффекты сульфата глюкозамина на прогрессирование остеоартрита: рандомизированное плацебо-контролируемое клиническое исследование.

Ланцет

2001

;

357

:

251

–6.122

Pavelka K, Gatterova J, Olejarova M, Machacek S, Giacovelli G, Rovati LC. Использование сульфата глюкозамина и замедление прогрессирования остеоартрита коленного сустава: трехлетнее рандомизированное плацебо-контролируемое двойное слепое исследование.

Arch Intern Med

2002

;

162

:

2113

–23.123

Knudsen PJ, Dinarello CA, Strom TB. Глюкокортикоиды подавляют транскрипционную и посттранскрипционную экспрессию интерлейкина 1 в клетках U937.

J Immunol

1987

;

139

:

4129

–34.124

Ли С.В., Цоу А.П., Чан Х. и др. . Глюкокортикоиды избирательно подавляют транскрипцию гена интерлейкина 1 бета и снижают стабильность мРНК интерлейкина 1 бета.

Proc Natl Acad Sci USA

1988

;

85

:

1204

–8.125

Pelletier JP, Cloutier JM, Martel-Pelletier J. Влияние тиапрофеновой кислоты, салицилата натрия и гидрокортизона in vitro на метаболизм протеогликанов остеоартрозного хряща человека.

J Rheumatol

1989

;

16

:

646

–55,126

Hill DJ. Влияние кортизола на пролиферацию клеток, синтез и деградацию протеогликанов в хрящевых зонах реберно-хрящевой пластины роста теленка in vitro с активностью соматомедина плазмы крысы и без нее.

J Endocrinol

1981

;

88

:

425

–35,127

Такигава М., Такано Т., Накагава К., Сакуда М., Судзуки Ф. Стимуляция пролиферации гидрокортизоном и синтеза гликозаминогликанов в черепно-лицевых хондроцитах кролика in vitro .

Arch Oral Biol

1988

;

33

:

893

–9,128

Макгуайр М.Б., Мерфи М., Рейнольдс Дж. Дж., Рассел Р.Г.Г. Производство коллагеназы и ингибитора (ТИМП) нормальной, ревматоидной и остеоартритической синовиальной оболочкой in vitro : эффекты гидрокортизона и индометацина.

Clin Biol

1981

;

61

:

703

–10.129

Пеллетье Дж. П., Мартель-Пеллетье Дж. Деградация хряща нейтральными протеогликаназами при экспериментальном остеоартрите.

Подавление стероидами. Arthritis Rheum

1985

;

28

:

1393

–401.130

Martel-Pelletier J, Cloutier JM, Pelletier JP. Нейтральные протеазы синовиальной оболочки при остеоартрите человека.

Arthritis Rheum

1986

;

29

:

1112

–21.131

Pelletier JP, Martel-Pelletier J, Cloutier JM, Woessner JF Jr. Активность кислой металлопротеиназы, разрушающей протеогликаны, в хрящах остеоартрита человека и эффекты внутрисуставных инъекций стероидов.

Arthritis Rheum

1987

;

30

:

541

–8.132

Pelletier JP, Mineau F, Raynauld JP, Woessner JF, Gunja-Smith Z, Martel-Pelletier J. Внутрисуставные инъекции метилпреднизолона ацетата уменьшают остеоартритические поражения параллельно с синтезом хондроцитарного стромелизина.

Arthritis Rheum

1994

;

37

:

414

–23.133

Itagane Y, Inada H, Fujita K, Isshiki G.Взаимодействие между стероидными гормонами и инсулиноподобным фактором роста-I в хондроцитах кролика.

Эндокринология

1991

;

128

:

1419

–24.134

Van der Kraan PM, Vitters EL, Postma NS, Verbunt J, van den Berg WB. Поддержание синтеза крупных протеогликанов в анатомически неповрежденном суставном хряще мыши с помощью стероидов и инсулиноподобного фактора роста I.

Ann Rheum Dis

1993

;

52

:

734

–41.135

Van Osch GJ, van der Veen SW, Verwoerd-Verhoef HL. In vitro повторная дифференцировка выращенных в культуре кроличьих и человеческих аурикулярных хондроцитов для реконструкции хряща.

Plast Reconstr Surg

2001

;

107

:

433

–40,136

Коломбо С., Батлер М., Хикман Л., Селвин М., Диаграмма J, Стейнец Б. Новая модель остеоартрита у кроликов. II. Оценка антиостеоартрозных эффектов выбранных противоревматических препаратов, применяемых системно.

Arthritis Rheum

1983

;

26

:

1132

–9.137

Батлер М., Коломбо С., Хикман Л. и др. . Новая модель остеоартроза у кроликов. III. Оценка антиостеоартрозных эффектов выбранных препаратов, вводимых внутрисуставно.

Arthritis Rheum

1983

;

26

:

1380

–6,138

Williams JM, Brandt KD. Гексацетонид триамцинолона защищает от фибрилляции и образования остеофитов после химически индуцированного повреждения суставного хряща.

Arthritis Rheum

1985

;

28

:

1267

–74.139

Пеллетье Дж. П., Мартель-Пеллетье Дж. Защитные эффекты кортикостероидов на повреждения хряща и образование остеофитов в модели остеоартрита у собак Понд-Нуки.

Arthritis Rheum

1989

;

32

:

181

–93.140

Wang J, Elewaut D, Hoffman I., Veys EM, Verbruggen G. Физиологические уровни гидрокортизона поддерживают оптимальный метаболизм внеклеточного матрикса хондроцитов.

Ann Rheum Dis

2004

;

63

:

61

–6.141

Бреннан Ф.М., Чантри Д., Джексон А., Майни Р., Фельдманн М. Ингибирующее действие антител ФНО-альфа на выработку интерлейкина-1 синовиальными клетками при ревматоидном артрите.

Ланцет

1989

;

2

:

244

–7.142

Lipsky PE, van der Heijde DM, St Clair EW et al . Инфликсимаб и метотрексат в лечении ревматоидного артрита.

Исследовательская группа по исследованию противоопухолевого фактора некроза при ревматоидном артрите с сопутствующей терапией.N Engl J Med

2000

;

343

:

1594

–602.143

Смолен Дж. С., Хан С., Бала М. и др. .; Исследовательская группа ATTRACT. Доказательства радиографической пользы лечения инфликсимабом плюс метотрексат у пациентов с ревматоидным артритом, у которых не было клинического улучшения: подробный субанализ данных исследования противоопухолевого фактора некроза при ревматоидном артрите с исследованием сопутствующей терапии.

Arthritis Rheum

2005

;

52

:

1020

–30.144

Круитхоф Э., Ван ден Бош Ф., Баетен Д. и др. . Повторные инфузии инфликсимаба, химерного моноклонального антитела против TNFalpha, пациентам с активной спондилоартропатией: наблюдение в течение одного года.

Ann Rheum Dis

2002

;

61

:

207

–12.145

Verbruggen G, Veys EM. Системы числовой оценки анатомической эволюции остеоартроза суставов пальцев.

Arthritis Rheum

1996

;

39

:

308

–20.

© Автор 2005. Опубликовано Oxford University Press от имени Британского общества ревматологов. Все права защищены. Для получения разрешений обращайтесь по электронной почте: [email protected]

.

Какова роль хондропротекторных препаратов в лечении остеоартрита (ОА)?

  • Информационный бюллетень по остеоартриту. Центры по контролю и профилактике заболеваний. Доступно по адресу https://www.cdc.gov/arthritis/basics/osteoarthritis.htm. 10 января 2019 г .; Доступ: 7 февраля 2020 г.

  • Котларц Х., Гуннарссон С.Л., Фанг Х., Риццо Я.А. Страховая компания и наличные расходы на остеоартрит в США: данные национального опроса. Rheum артрита . 2009 Декабрь 60 (12): 3546-53. [Медлайн]. [Полный текст].

  • Бакленд-Райт C, Verbruggen G, Haraoui PB. Визуализация: радиологическая оценка остеоартрита кисти. Хрящевой артроз . 2000. 55-6.

  • Джуэлл FM, Ватт I, Доэрти М.Простые рентгенологические признаки остеоартроза. Брандт К.Д., Доэрти М., Ломандер Л.С., ред. Остеоартроз . Нью-Йорк, Нью-Йорк: издательство Оксфордского университета; 1998. 217-37.

  • Recht MP, Kramer J, Marcelis S, Pathria MN, Trudell D, Haghighi P, et al. Аномалии суставного хряща коленного сустава: анализ доступных методов МРТ. Радиология . 1993 Май. 187 (2): 473-8. [Медлайн].

  • Хантер DJ. Расширенная визуализация при остеоартрите. Bull NYU Hosp Jt Dis . 2008. 66 (3): 251-60. [Медлайн].

  • Keen HI, Wakefield RJ, Conaghan PG. Систематический обзор ультразвукового исследования при остеоартрите. Энн Рум Дис . 2009 Май. 68 (5): 611-9. [Медлайн].

  • Recht MP, Goodwin DW, Winalski CS, Белый LM. МРТ суставного хряща: пересматривая текущее состояние и будущие направления. AJR Am J Roentgenol . 2005 Октябрь 185 (4): 899-914. [Медлайн].

  • Краус В.Б., МакДэниел Г., Уоррелл Т.В., Фенг С., Вейл Т.П., Варджу Г. и др.Связь сцинтиграфических аномалий костей с деформацией колена и болью. Энн Рум Дис . 2009 ноябрь 68 (11): 1673-9. [Медлайн].

  • Felson DT, Zhang Y, Anthony JM, Naimark A, Anderson JJ. Снижение веса снижает риск симптоматического остеоартрита коленного сустава у женщин. Фрамингемское исследование. Энн Интерн Мед. . 1992 г., 1. 116 (7): 535-9. [Медлайн].

  • Краутлер М.Дж., Митчелл Дж.Дж., Чахла Дж., Маккарти Е.К., Паскуаль-Гарридо К.Внутрисуставная имплантация мезенхимальных стволовых клеток, часть 1: обзор литературы по профилактике постменискэктомического остеоартрита. Orthop J Sports Med . 2017 19 января. 5 (1): 2325

    6680815. [Медлайн]. [Полный текст].

  • Лафлин Дж. Генетическая эпидемиология первичного остеоартрита человека: современное состояние. Эксперт Рев Мол Мед . 2005 24 мая. 7 (9): 1-12. [Медлайн].

  • Dagenais S, Гарбедиан S, Вай EK. Систематический обзор распространенности первичного остеоартроза тазобедренного сустава на рентгенограммах. Clin Orthop Relat Res . 2009 Март 467 (3): 623-37. [Медлайн]. [Полный текст].

  • Ли П., Руни П.Дж., Старрок Р.Д., Кеннеди А.С., Дик В. Этиология и патогенез остеоартроза: обзор. Семенной ревматоидный артрит . 1974 Весна. 3 (3): 189-218. [Медлайн].

  • Мюррей РО. Этиология первичного остеоартроза тазобедренного сустава. Br J Радиол . 1965, ноябрь 38 (455): 810-24. [Медлайн].

  • Радин Э.Р., Пол ИЛ, Роуз РМ.Патогенез первичного остеоартроза. Ланцет . 1972 24 июня. 1 (7765): 1395-6. [Медлайн].

  • Шарма Л. Эпидемиология остеоартрита. Московиц Р.В., Хауэлл Д.С., Альтман, Р.Д. и др., Ред. Остеоартроз . 3-е изд. 2001. 3-27.

  • Вейс Э., Вербрюгген Г. Эволюция и прогноз остеоартрита. Reginster JY, Pelletier JP, Martel-Pelletier J, et al, eds. Остеоартроз . 1999. 312-3.

  • Вальдеррабано В., Хорисбергер М., Рассел И., Дугалл Х., Хинтерманн Б.Этиология артроза голеностопного сустава. Clin Orthop Relat Res . 2009 Июль 467 (7): 1800-6. [Медлайн]. [Полный текст].

  • Джуэлл FM, Ватт I, Доэрти М. Простые рентгенографические признаки остеоартрита. Брандт К.Д., Доэрти М., Ломандер Л.С., ред. Остеоартроз . Нью-Йорк, Нью-Йорк: издательство Оксфордского университета; 1998. 217-37.

  • Манкин HJ. Реакция суставного хряща на травму и остеоартроз (первая из двух частей). N Engl J Med .1974 12 декабря. 291 (24): 1285-92. [Медлайн].

  • Миллер Э. Дж., Ван дер Корст Дж. К., Соколофф Л. Коллаген суставного и реберного хряща человека. Rheum артрита . 1969 12 (1): 21–9 февраля. [Медлайн].

  • Фадке К. Регуляция метаболизма хондроцитов в суставном хряще — гипотеза. Дж Ревматол . 1983 декабрь 10 (6): 852-60. [Медлайн].

  • Resnick D, Niwayama G. Дегенеративное заболевание экстраспинальной локализации.Резник Д., изд. Диагностика заболеваний костей и суставов . 3-е изд. 1995. 1263-1371.

  • Пул AR. Введение в патофизиологию остеоартроза. Передний Biosci . 1999 15 октября. 4: D662-70. [Медлайн].

  • van Baarsen LG, Lebre MC, van der Coelen D, Aarrass S, Tang MW, Ramwadhdoebe TH. Неоднородный паттерн экспрессии интерлейкина 17A (IL-17A), IL-17F и их рецепторов в синовиальной оболочке ревматоидного артрита, псориатического артрита и остеоартрита: возможное объяснение отсутствия ответа на терапию анти-IL-17? Arthritis Res Ther . 2014. 16 (4): 426. [Медлайн].

  • Краснокутский С., Ошинский С., Аттур М., Ма С., Чжоу Х., Чжэн Ф. и др. Уровни уратов в сыворотке предсказывают сужение суставной щели у пациентов без подагры с медиальным остеоартритом коленного сустава. Ревматический артрит . 2017 июн.69 (6): 1213-1220. [Медлайн]. [Полный текст].

  • Hoff P, Buttgereit F, Burmester GR, Jakstadt M, Gaber T, Andreas K и др. Синовиальная жидкость при остеоартрите активирует провоспалительные цитокины в первичных хондроцитах человека. Инт Ортоп . 2013 Январь 37 (1): 145-51. [Медлайн]. [Полный текст].

  • Радин Э.Л., Пол ИЛ. Реакция суставов на ударную нагрузку. I. Износ in vitro. Rheum артрита . 1971 май-июнь. 14 (3): 356-62. [Медлайн].

  • Беркитт Х.Г., Стивенс А., Лоу Дж. С.. Система скелета. Базовая гистопатология . 3-е изд. Нью-Йорк, Нью-Йорк: Черчилль Ливингстон; 1996. 260.

  • Хамерман Д. Биология остеоартрита. N Engl J Med . 1989 18 мая. 320 (20): 1322-30. [Медлайн].

  • Hartmann C, De Buyser J, Henry Y, Morère-Le Paven MC, Dyer TA, Rode A. Ядерные гены контролируют изменения в организации митохондриального генома в тканевых культурах, полученных из незрелых зародышей пшеницы. Curr Genet . 1992 Май. 21 (6): 515-20. [Медлайн].

  • Хауэлл Д.С. Патогенез остеоартроза. Am J Med . 1986, 28 апреля. 80 (4B): 24-8.[Медлайн].

  • Буллоу PG. Геометрия диартродиальных суставов, ее физиологическое состояние и возможное значение возрастных изменений в распределении геометрии и нагрузки и развитии остеоартрита. Clin Orthop Relat Res . 1981 Май. 61-6. [Медлайн].

  • Aigner T, Rose J, Martin J, Buckwalter J. Теории старения первичного остеоартрита: от эпидемиологии до молекулярной биологии. Rejuvenation Res .2004 Лето. 7 (2): 134-45. [Медлайн].

  • OUTERBRIDGE RE. Этиология хондромаляции надколенника. J Bone Joint Surg Br . 1961 г., ноябрь 43-B: 752-7. [Медлайн].

  • Zgoda M, Paczek L, Bartlomiejczyk I, Sieminska J, Chmielewski D, Górecki A. Возрастное снижение активности коллагеназы в головке бедренной кости у пациентов с остеоартрозом тазобедренного сустава. Clin Rheumatol . 2007 26 февраля (2): 240-1. [Медлайн].

  • Reyes C, Leyland KM, Peat G, Cooper C, Arden NK, Prieto-Alhambra D.Связь между избыточным весом и ожирением и риском клинически диагностированного остеоартрита колена, бедра и кисти: популяционное когортное исследование. Ревматический артрит . 2016 августа 68 (8): 1869-75. [Медлайн].

  • Felson DT, Anderson JJ, Naimark A, Walker AM, Meenan RF. Ожирение и остеоартроз коленного сустава. Фрамингемское исследование. Энн Интерн Мед. . 1 июля 1988 г. 109 (1): 18-24. [Медлайн].

  • Goulston LM, Kiran A, Javaid MK, et al.Предсказывает ли ожирение боль в коленях у женщин в течение четырнадцати лет независимо от рентгенологических изменений? Центр лечения артрита (Хобокен) . 2011 Октябрь 63 (10): 1398-406. [Медлайн].

  • Херли М.В. Роль мышечной слабости в патогенезе остеоартроза. Rheum Dis Clin North Am . 1999 Май. 25 (2): 283-98, vi. [Медлайн].

  • Felson DT. Факторы риска остеоартрита: понимание уязвимости суставов. Clin Orthop Relat Res .2004 окт. S16-21. [Медлайн].

  • Williams MF, London DA, Husni EM, Navaneethan S, Kashyap SR. Диабет 2 типа и остеоартрит: систематический обзор и метаанализ. J Осложнения диабета . 2016 июл.30 (5): 944-50. [Медлайн].

  • Jeon OH, Kim C, Laberge RM, Demaria M, Rathod S, Vasserot AP и др. Местное очищение от стареющих клеток ослабляет развитие посттравматического остеоартрита и создает прорегенеративную среду. Нат Мед . 2017 июня 23 (6): 775-781. [Медлайн]. [Полный текст].

  • de Boer TN, van Spil WE, Huisman AM, Polak AA, Bijlsma JW, Lafeber FP, et al. Адипокины сыворотки при остеоартрозе; сравнение с контролем и взаимосвязь с местными параметрами синовиального воспаления и повреждения хряща. Хрящевой артроз . 2012 20 августа (8): 846-53. [Медлайн].

  • Андерсон Д.Д., Чубинская С., Гилак Ф., Мартин Дж. А., Эгема Т.Р., Олсон С.А. и др.Посттравматический остеоартрит: лучшее понимание и возможности раннего вмешательства. Дж. Ортоп Рес . 2011 июн.29 (6): 802-9. [Медлайн]. [Полный текст].

  • Фелсон Д.Т., Ниу Дж., Гросс К.Д., Энглунд М., Шарма Л., Кук Т.Д. и др. Смещение вальгуса является фактором риска заболеваемости и прогрессирования латерального остеоартрита коленного сустава: результаты исследования MOST и инициативы по остеоартриту. Rheum артрита . 2012 30 ноября. [Medline].

  • Вальдес А.М., Спектор Т.Д.Генетическая эпидемиология остеоартроза тазобедренного и коленного суставов. Нат Ревматол . 2011 7 января (1): 23-32. [Медлайн].

  • Felson DT. Развитие клинического понимания остеоартрита. Arthritis Res Ther . 2009. 11 (1): 203. [Медлайн]. [Полный текст].

  • Поллард Т.С., Батра Р.Н., судья А, Уоткинс Б., МакНалли Э.Г., Гилл Х.С. и др. Генетическая предрасположенность к наличию и 5-летнему клиническому прогрессированию остеоартроза тазобедренного сустава. Хрящевой артроз . 2012 май. 20 (5): 368-75. [Медлайн].

  • Вальдес А.М., Спектор Т.Д. Клиническая значимость генетической предрасположенности к остеоартриту. Best Practices Clin Rheumatol . 2010 24 февраля (1): 3-14. [Медлайн].

  • Джеффрис М.А., Доника М., Бейкер Л.В., Стивенсон М.Э., Аннан А.С., Хамфри МБ. Полногеномное исследование метилирования ДНК выявляет значительные эпигеномные изменения в остеоартрозном хряще. Ревматический артрит .2014 Октябрь 66 (10): 2804-15. [Медлайн].

  • Chang SC, Hoang B, Thomas JT, Vukicevic S, Luyten FP, Ryba NJ, et al. Морфогенетические белки хрящевого происхождения. Новые члены суперсемейства трансформирующих факторов роста-бета преимущественно экспрессируются в длинных костях во время эмбрионального развития человека. Дж. Биол. Хим. . 1994 11 ноября. 269 (45): 28227-34. [Медлайн].

  • Лин К., Ван С., Юлиус М.А., Китаевски Дж., Моос М.-младший, Луйтен Ф.П. Богатый цистеином вьющийся домен Frzb-1 необходим и достаточен для модуляции передачи сигналов Wnt. Proc Natl Acad Sci U S A . 1997, 14 октября. 94 (21): 11196-200. [Медлайн]. [Полный текст].

  • Чапман К., Такахаши А., Меуленбельт I, Уотсон С., Родригес-Лопес Дж., Эгли Р. и др. Мета-анализ европейских и азиатских когорт показывает глобальную роль функционального SNP в 5 ‘UTR GDF5 с предрасположенностью к остеоартриту. Хум Мол Генет . 2008 15 мая. 17 (10): 1497-504. [Медлайн].

  • Bos SD, Slagboom PE, Meulenbelt I. Новые взгляды на остеоартрит: особенности раннего развития болезни, связанной со старением. Curr Opin Rheumatol . 2008 20 сентября (5): 553-9. [Медлайн].

  • Чепмен К., Вальдес AM. Генетические факторы в патогенезе ОА. Кость . 2012 августа 51 (2): 258-64. [Медлайн].

  • Перейра Д., Пелетейро Б., Араужу Дж., Бранко Дж., Сантос Р.А., Рамос Э. Влияние определения остеоартрита на оценки распространенности и заболеваемости: систематический обзор. Хрящевой артроз . 2011 ноября 19 (11): 1270-85. [Медлайн].

  • Roberts J, Burch TA.Распространенность остеоартроза у взрослых по возрасту, полу, расе и географическому положению. Vital Health Stat 11 . 1966 июн. 1-27. [Медлайн].

  • Hoaglund FT, Yau AC, Wong WL. Остеоартроз тазобедренного сустава и других суставов на юге Китая в Гонконге. J Bone Joint Surg Am . 1973, апрель, 55 (3): 545-57. [Медлайн].

  • Felson DT. Сравнение распространенности ревматических заболеваний в Китае с остальным миром. Arthritis Res Ther .2008. 10 (1): 106. [Медлайн]. [Полный текст].

  • Джордан Дж. М., Хелмик К. Г., Реннер Дж. Б., Лута Дж., Драгомир А. Д., Вудард Дж. И др. Распространенность симптомов коленного сустава, рентгенологического и симптоматического остеоартрита коленного сустава у афроамериканцев и кавказцев: Проект остеоартрита округа Джонстон. Дж Ревматол . 2007, январь, 34 (1): 172-80. [Медлайн].

  • Чаппл С.М., Николсон Х., Бакстер Г.Д., Эбботт Дж. Х. Характеристики пациентов, которые предсказывают прогрессирование остеоартрита коленного сустава: систематический обзор прогностических исследований. Центр лечения артрита (Хобокен) . 2011 августа 63 (8): 1115-25. [Медлайн].

  • [Рекомендации] Альтман Р., Аларкон Дж., Аппельрут Д., Блох Д., Боренштейн Д., Брандт К. и др. Критерии Американского колледжа ревматологии для классификации остеоартрита кисти и сообщения о нем. Rheum артрита . 1990 ноябрь 33 (11): 1601-10. [Медлайн].

  • [Рекомендации] Альтман Р., Аларкон Г., Аппельрут Д., Блох Д., Боренштейн Д., Брандт К. и др.Критерии Американского колледжа ревматологии для классификации остеоартрита бедра и сообщения о нем. Rheum артрита . 1991 Май. 34 (5): 505-14. [Медлайн].

  • [Рекомендации] Альтман Р., Эш Э., Блох Д., Боле Г., Боренштейн Д., Брандт К. и др. Разработка критериев классификации и отчетности по остеоартриту. Классификация остеоартроза коленного сустава. Комитет по диагностическим и терапевтическим критериям Американской ассоциации ревматизма. Rheum артрита . 1986, 29 августа (8): 1039-49. [Медлайн].

  • Marshall M, Peat G, Nicholls E, van der Windt D, Myers H, Dziedzic K. Подгруппы симптоматического остеоартрита кисти у пожилых людей, проживающих в сообществе, в Соединенном Королевстве: распространенность, взаимосвязь, профили факторов риска и клинические характеристики на исходном уровне и через 3 года. Хрящевой артроз . 2013 21 ноября (11): 1674-84. [Медлайн].

  • Brandt KD.Пессимистический взгляд на серологические маркеры для диагностики и лечения остеоартрита. Биохимические, иммунологические и клинико-патологические барьеры. J Rheumatol Suppl . 1989 августа 18: 39-42. [Медлайн].

  • Patra D, Sandell LJ. Последние достижения в области биомаркеров остеоартрита. Curr Opin Rheumatol . 2011 Сентябрь 23 (5): 465-70. [Медлайн].

  • [Рекомендации] МакАлиндон Т.Е., Баннуру Р.Р., Салливан М.К., Арден Н.К., Беренбаум Ф., Бирма-Зейнстра С.М. и др.Рекомендации OARSI по безоперационному лечению остеоартрита коленного сустава. Хрящевой артроз . 2014 марта 22 (3): 363-88. [Медлайн]. [Полный текст].

  • Агентство медицинских исследований и качества. Лечение остеоартрита коленного сустава: обновленный обзор. AHRQ. Доступно по адресу https://effectivehealthcare.ahrq.gov/topics/osteoarthritis-knee-update/research-2017. 4 мая 2017 г .; Доступ: 15 марта 2019 г.

  • Цуй Г. Х., Ван Й., Ли Си Джей, Ши СН, Ван В. С..Эффективность мезенхимальных стволовых клеток в лечении пациентов с остеоартрозом коленного сустава: метаанализ. Эксперт Тер Мед . 2016 12 ноября (5): 3390-3400. [Медлайн]. [Полный текст].

  • Кристьянссон Б., Хонсавек С. Современные перспективы лечения остеоартрита мезенхимальными стволовыми клетками. Стволовые клетки Int . 2014. 2014: 1943 18. [Медлайн].

  • Pas HI, Винтерс М., Хайма Х.Дж., Кенис М.Дж., Тол Дж.Л., Моэн М.Х. Инъекции стволовых клеток при остеоартрозе коленного сустава: систематический обзор литературы. Br J Sports Med . 2017 Август 51 (15): 1125-1133. [Медлайн].

  • Чахла Дж., Пьюцци Н.С., Митчелл Дж. Дж., Дин С.С., Паскуаль-Гарридо С., ЛаПрейд РФ и др. Внутрисуставная клеточная терапия остеоартрита и очаговых дефектов хряща коленного сустава: систематический обзор литературы и анализ качества исследований. J Bone Joint Surg Am . 2016 21 сентября. 98 (18): 1511-21. [Медлайн].

  • Zeng C, Dubreuil M, LaRochelle MR, Lu N, Wei J, Choi HK, et al.Связь трамадола со смертностью от всех причин среди пациентов с остеоартритом. JAMA . 2019 12 марта. 321 (10): 969-982. [Медлайн].

  • Келли Дж. Трамадол связан с более высокой смертностью от остеоартрита. Медицинские новости Medscape . 12 марта 2019 г. Доступно по адресу https://www.medscape.com/viewarticle/

    2.

  • Freeman S. Tramadol Риск смерти от остеоартрита может перевесить преимущества. Медицинские новости Medscape. Доступно по адресу https: // www.medscape.com/viewarticle/

    4. 8 июня 2020 г .; Дата обращения: 10 июня 2020 г.

  • Consensi (амлодипин / целекоксиб) [вкладыш в упаковке]. Тель-Авив, Израиль: Китов Фарма Лтд., Июнь 2018 г. Доступно на [Полный текст].

  • Кингсбери С.Р., Тарманатан П., Кединг А., Рональдсон С.Дж., Грейнджер А., Уэйкфилд Р.Дж. и др. Эффективность гидроксихлорохина в уменьшении симптомов остеоартрита кисти: рандомизированное исследование. Энн Интерн Мед. . 2018 20 февраля. [Medline].

  • Агентство медицинских исследований и качества. Анальгетики при остеоартрите: обновление сравнительного обзора эффективности 2006 года. AHRQ. Доступно по адресу https://effectivehealthcare.ahrq.gov/topics/osteoarthritis-pain/research. 24 октября 2011 г .; Доступ: 15 марта 2019 г.

  • Citrome L, Weiss-Citrome A. Систематический обзор дулоксетина для лечения боли при остеоартрите: какое количество необходимо лечить, количество, необходимое для нанесения вреда, и вероятность получения помощи или вреда ?. Постградская медицина . 2012 января 124 (1): 83-93. [Медлайн].

  • Frakes EP, Risser RC, Ball TD, Hochberg MC, Wohlreich MM. Дулоксетин, добавленный к пероральным нестероидным противовоспалительным препаратам для лечения боли в коленях, вызванной остеоартритом: результаты рандомизированного двойного слепого плацебо-контролируемого исследования. Curr Med Res Opin . 2011 27 декабря (12): 2361-72. [Медлайн].

  • Нойштадт DH. Внутрисуставная терапия. Московиц Р.В., Хауэлл Д.С., Альтман Р.Д. и др., Ред. Остеоартроз . 3-е изд. 2001. 393-409.

  • Линекер С. К., Белл М. Дж., Бойл Дж., Бэдли Е. М., Флакстад Л., Флеминг Дж. И др. Внедрение руководств по клинической практике артрита в первичной медико-санитарной помощи. Мед. Обучение . 2009 31 марта (3): 230-7. [Медлайн].

  • Годвин М., Доус М. Внутрисуставные инъекции стероидов при болезненных коленях. Систематический обзор с метаанализом. Кан Фам Врач . 2004 Февраль 50: 241-8. [Медлайн]. [Полный текст].

  • Макалиндон Т.Э., ЛаВалли М.П., ​​Харви В.Ф., Прайс Л.Л., Дрибан Дж.Б., Чжан М. и др. Эффект внутрисуставного триамцинолона по сравнению с физиологическим раствором на объем хряща коленного сустава и боль у пациентов с остеоартритом коленного сустава: рандомизированное клиническое испытание. JAMA . 2017 16 мая. 317 (19): 1967-1975. [Медлайн].

  • Инъекции стероидов Haelle T. Увеличение потери хряща при артрите коленного сустава. Медицинские новости Medscape. Доступно на https://www.medscape.com/viewarticle/880072.16 мая 2017 г .; Доступ: 31 октября 2017 г.

  • Конаган П.Г., Хантер Д.Д., Коэн С.Б., Краус В.Б., Беренбаум Ф., Либерман Дж. Р. и др. Эффекты однократной внутрисуставной инъекции микросферного препарата триамцинолона ацетонида на боль при остеоартрите коленного сустава: двойное слепое, рандомизированное, плацебо-контролируемое многонациональное исследование. J Bone Joint Surg Am . 2018 г. 18 апреля. 100 (8): 666-677. [Медлайн]. [Полный текст].

  • Ламберт Р.Г., Хатчингс Э.Д., Грейс М.Г., Джангри Г.С., Коннер-Спейди Б., Максимович В.П.Инъекции стероидов при остеоартрите тазобедренного сустава: рандомизированное двойное слепое плацебо-контролируемое исследование. Rheum артрита . 2007 июль 56 (7): 2278-87. [Медлайн].

  • Мартин К.Л., Браун Дж. А.. Внутрисуставные инъекции кортикостероидов при симптоматическом остеоартрите коленного сустава: что должен знать врач-ортопед. J Am Acad Orthop Surg . 2019 1. 27 (17): e758-e766. [Медлайн]. [Полный текст].

  • Kompel AJ, Roemer FW, Murakami AM, Diaz LE, Crema MD, Гермази А.Внутрисуставные инъекции кортикостероидов в бедро и колено: возможно, не так безопасно, как мы думали ?. Радиология . 2019 15 октября 1

    . [Medline]. [Полный текст].

  • Ститик Т.П., Леви Я. Вязкоструктурные добавки (биодобавки) при остеоартрите. Am J Phys Med Rehabil . 2006 ноябрь 85 (11 приложение): S32-50. [Медлайн].

  • Беллами Н., Кэмпбелл Дж., Робинсон В., Джи Т., Борн Р., Уэллс Г. Вискозиметрическая добавка для лечения остеоартроза коленного сустава. Кокрановская база данных Syst Rev . 2006 г. 19 апреля. CD005321. [Медлайн].

  • Гольдберг В.М., Баквалтер Дж. А.. Гиалуронаны в лечении остеоартрита коленного сустава: данные о модифицирующей болезнь активности. Хрящевой артроз . 2005 марта 13 (3): 216-24. [Медлайн].

  • Альтман Р.Д., Московиц Р. Внутрисуставной гиалуронат натрия (Гиалган) в лечении пациентов с остеоартрозом коленного сустава: рандомизированное клиническое исследование.Группа изучения Хиалгана. Дж Ревматол . 1998 25 ноября (11): 2203-12. [Медлайн].

  • Ститик Т.П., Блэксин М.Ф., Стискал Д.М., Ким Дж. Х., Фой П. М., Шенхер Л. и др. Эффективность и безопасность лечения гиалуроновой кислотой в сочетании с домашними упражнениями при боли при остеоартрите коленного сустава. Arch Phys Med Rehabil . 2007 Февраль 88 (2): 135-41. [Медлайн].

  • Вадделл Д.Д., Коломыткин О.В., Данн С, Марино А.А. Гиалуронан подавляет активность металлопротеиназы, индуцированную IL-1beta, в синовиальной ткани. Clin Orthop Relat Res . 2007 декабрь 465: 241-8. [Медлайн].

  • Gato-Calvo L, Magalhaes J, Ruiz-Romero C, Blanco FJ, Burguera EF. Плазма, обогащенная тромбоцитами, в лечении остеоартрита: обзор текущих данных. Ther Adv Chronic Dis . 2019. 10: 2040622319825567. [Медлайн]. [Полный текст].

  • Дай В.Л., Чжоу А.Г., Чжан Х., Чжан Дж. Эффективность богатой тромбоцитами плазмы при лечении остеоартрита коленного сустава: метаанализ рандомизированных контролируемых испытаний. Артроскопия . 2017 Mar.33 (3): 659-670.e1. [Медлайн].

  • Yaradilmis CYU, Demirkale I, Tagral AS, Okkaoglu MC, Ates A, Altay M. Сравнение двух составов плазмы с высоким содержанием тромбоцитов с добавлением вязкости при лечении гонартроза средней степени тяжести: проспективное рандомизированное контролируемое исследование. Ортопедический журнал . 28 января 2020 г. 20: 240-246. [Полный текст].

  • Чу CR, Родео С., Бутани Н., Гудрич Л. Р., Хуард Дж., Иррганг Дж. И др.Оптимизация клинического использования биопрепаратов в ортопедической хирургии: согласованные рекомендации конференции AAOS / NIH U-13 2018 г. J Am Acad Orthop Surg . 2019 15 января. 27 (2): e50-e63. [Медлайн]. [Полный текст].

  • Рабаго Д., Паттерсон Дж. Дж., Мундт М., Кийовски Р., Гретти Дж., Сегал Н. А. и др. Пролотерапия декстрозой при остеоартрите коленного сустава: рандомизированное контролируемое исследование. Энн Фам Мед . 2013 май-июнь. 11 (3): 229-37. [Медлайн]. [Полный текст].

  • Sawitzke AD, Shi H, Finco MF, Dunlop DD, Bingham CO 3rd, Harris CL, et al.Влияние глюкозамина и / или хондроитинсульфата на прогрессирование остеоартрита коленного сустава: отчет по интервенционному исследованию артрита глюкозамина / хондроитина. Rheum артрита . 2008 Октябрь 58 (10): 3183-91. [Медлайн]. [Полный текст].

  • Clegg DO, Reda DJ, Harris CL, et al. Глюкозамин, хондроитинсульфат и их комбинация для лечения болезненного остеоартрита коленного сустава. N Engl J Med . 2006 г. 23 февраля. 354 (8): 795-808. [Медлайн].

  • Rutjes AW, Nüesch E, Reichenbach S, Jüni P.S-аденозилметионин при остеоартрозе колена или бедра. Кокрановская база данных Syst Rev . 2009 7 октября. CD007321. [Медлайн].

  • Ван З., Джонс Дж., Винзенберг Т., Цай Дж., Ласлетт Л.Л., Эйткен Д. и др. Эффективность экстракта Curcuma longa для лечения симптомов и синовита выпота при остеоартрите коленного сустава: рандомизированное исследование. Энн Интерн Мед. . 2020 15 сентября [Medline].

  • Hathcock JN, Shao A. Оценка риска глюкозамина и хондроитинсульфата. Regul Toxicol Pharmacol . 2007 Февраль 47 (1): 78-83. [Медлайн].

  • Gege C, Bao B, Bluhm H, Boer J, Gallagher BM, Korniski B и др. Открытие и оценка не-Zn хелатирующего селективного ингибитора матриксной металлопротеиназы 13 (MMP-13) для потенциального внутрисуставного лечения остеоартрита. J Med Chem . 2012 26 января. 55 (2): 709-16. [Медлайн].

  • Брукс М. Смешанные результаты для нового лекарства от остеоартрита. Медицинские новости Medscape.Доступно на https://www.medscape.com/viewarticle/

    3. 30 декабря 2019 г .; Доступ: 15 апреля 2020 г.

  • Brown MT, Murphy FT, Radin DM, Davignon I, Smith MD, West CR. Танезумаб уменьшает боль в коленях при остеоартрите: результаты рандомизированного двойного слепого плацебо-контролируемого исследования III фазы. Дж Боль . 2012 13 августа (8): 790-8. [Медлайн].

  • Пирсон Р. Лилли утверждает, что новый тип обезболивающего может уменьшить потребность в опиоидах. Медицинские новости Medscape.Доступно на http://www.medscape.com/viewarticle/863797. 25 мая 2016 г .; Доступ: 8 июля 2016 г.

  • Родди Э., Доэрти М. Изменение образа жизни и остеоартрит: каковы доказательства ?. Best Practices Clin Rheumatol . 2006 20 февраля (1): 81-97. [Медлайн].

  • Perrot S, Poiraudeau S, Kabir M, Bertin P, Sichere P, Serrie A. и др. Активные или пассивные стратегии купирования боли при остеоартрите тазобедренного и коленного суставов? Результаты национального опроса 4719 пациентов в учреждениях первичной медико-санитарной помощи. Rheum артрита . 2008 15 ноября. 59 (11): 1555-62. [Медлайн].

  • Беннелл К.Л., Кириакидес М., Ходжес П.В., Хинман Р.С. Влияние двух бустерных сеансов физиотерапии на результаты домашних упражнений у людей с остеоартритом коленного сустава: рандомизированное контролируемое исследование. Центр лечения артрита (Хобокен) . 2014 ноябрь 66 (11): 1680-7. [Медлайн].

  • Anandacoomarasamy A, Leibman S, Smith G, et al. Снижение веса у тучных людей оказывает структурно-модифицирующее воздействие на медиальный, но не на латеральный суставной хрящ коленного сустава. Энн Рум Дис . 2012 Январь 71 (1): 26-32. [Медлайн].

  • Мессье SP. Ожирение и остеоартрит: генезис заболевания и нефармакологическое управление весом. Rheum Dis Clin North Am . 2008 г., 34 (3): 713-29. [Медлайн]. [Полный текст].

  • Маккарти GM, Маккарти DJ. Эффект местного капсаицина в терапии болезненного остеоартрита рук. Дж Ревматол . 1992 апреля 19 (4): 604-7. [Медлайн].

  • Ватт FE, Кеннеди Д.Л., Карлайл К.Э., Фрейдин А.Дж., Шидло Р.М., Ханифилд Л. и др.Ночная иммобилизация дистального межфалангового сустава снижает боль и деформацию разгибания при остеоартрозе кисти. Ревматология (Оксфорд) . 2014 8 февраля [Medline].

  • Коэн Р. Ночные шины на пальцы могут облегчить боль при артрите. Medscape [сериал онлайн]. Доступно на http://www.medscape.com/viewarticle/821310. Доступ: 11 марта 2014 г.

  • Juhl C, Christensen R, Roos EM, Zhang W., Lund H. Влияние типа и дозы упражнений на боль и инвалидность при остеоартрите коленного сустава: систематический обзор и мета-регрессионный анализ рандомизированных контролируемых исследований. Ревматический артрит . 2014 Март 66 (3): 622-36. [Медлайн].

  • Ян MH, Lin CH, Lin YF, Lin JJ, Lin DH. Влияние нагрузки на нагрузку и упражнений без нагрузки на функцию, скорость ходьбы и чувство положения у участников с остеоартритом коленного сустава: рандомизированное контролируемое исследование. Arch Phys Med Rehabil . 2009 июн 90 (6): 897-904. [Медлайн].

  • Чайпиньо К., Кароонсупчароен О. Нет разницы между силовой тренировкой в ​​домашних условиях и тренировкой равновесия в домашних условиях при боли у пациентов с остеоартрозом коленного сустава: рандомизированное исследование. Aust J Physiother . 2009. 55 (1): 25-30. [Медлайн].

  • Marks R, Allegrante JP. Хронический остеоартрит и соблюдение физических упражнений: обзор литературы. Закон о физике старения . 2005 октября, 13 (4): 434-60. [Медлайн].

  • Ван Ч., Шмид Ч., Хибберд П.Л., Калиш Р., Рубенофф Р., Ронес Р. и др. Тайцзи эффективен при лечении остеоартроза коленного сустава: рандомизированное контролируемое исследование. Rheum артрита . 2009 15 ноя.61 (11): 1545-53. [Медлайн].

  • Wang C, Schmid CH, Iversen MD, Harvey WF, Fielding RA, Driban JB, et al. Сравнительная эффективность тайцзи по сравнению с физиотерапией остеоартрита коленного сустава: рандомизированное исследование. Энн Интерн Мед. . 2016 17 мая. [Medline].

  • Кан Дж. В., Ли М. С., Посадски П., Эрнст Э. Тайчи для лечения остеоартрита: систематический обзор и метаанализ. BMJ Открыть . 2011 28 марта. 1 (1): e000035.[Медлайн]. [Полный текст].

  • Гудман А. Коленный бандаж уменьшает повреждение и боль при остеоартрите. Медицинские новости Medscape. Доступно на http://www.medscape.com/viewarticle/813572. Доступ: 4 ноября 2013 г.

  • [Рекомендации] Hochberg MC, Altman RD, April KT, Benkhalti M, Guyatt G, McGowan J, et al. Рекомендации Американского колледжа ревматологии, 2012 г., по использованию нефармакологических и фармакологических методов лечения остеоартрита кисти, бедра и колена. Центр лечения артрита (Хобокен) . 2012 Апрель 64 (4): 465-74. [Медлайн]. [Полный текст].

  • Hinman RS, Wrigley TV, Metcalf BR, Campbell PK, Paterson KL, Hunter DJ и др. Разгрузочная обувь для самостоятельного лечения остеоартрита коленного сустава: рандомизированное испытание. Энн Интерн Мед. . 2016 12 июля [Medline].

  • Лю Х., Эбботт Дж., Пчела Дж. Импульсные электромагнитные поля влияют на состав внеклеточного матрикса гиалинового хряща, не влияя на молекулярную структуру. Хрящевой артроз . 1996 4 марта (1): 63-76. [Медлайн].

  • Zizic TM, Hoffman KC, Holt PA, Hungerford DS, O’Dell JR, Jacobs MA, et al. Лечение артроза коленного сустава импульсной электростимуляцией. Дж Ревматол . 1995 22 сентября (9): 1757-61. [Медлайн].

  • Garland D, Holt P, Harrington JT, Caldwell J, Zizic T., Cholewczynski J. Трехмесячное рандомизированное двойное слепое плацебо-контролируемое исследование для оценки безопасности и эффективности высокооптимизированного, емкостно-связанного, импульсного электростимулятор у больных остеоартрозом коленного сустава. Хрящевой артроз . 2007 июн.15 (6): 630-7. [Медлайн].

  • Фукуда Т. Ю., Алвес да Кунья Р., Фукуда В. О. и др. Импульсное коротковолновое лечение у женщин с остеоартрозом коленного сустава: многоцентровое рандомизированное плацебо-контролируемое клиническое исследование. Phys Ther . 2011 июл.91 (7): 1009-17. [Медлайн].

  • Инь К.Н., В то время как А. Обезболивание при остеоартрите и ревматоидном артрите: ДЕСЯТКИ. Br J Сообщество Nurs . 2007 Август.12 (8): 364-71. [Медлайн].

  • Pietrosimone BG, Saliba SA, Hart JM, Hertel J, Kerrigan DC, Ingersoll CD. Влияние чрескожной электрической стимуляции нервов и терапевтических упражнений на активацию четырехглавой мышцы у людей с тибио-бедренным остеоартритом. J Orthop Sports Phys Ther . 2011 января 41 (1): 4-12. [Медлайн].

  • Selfe TK, Taylor AG. Иглоукалывание и остеоартрит коленного сустава: обзор рандомизированных контролируемых исследований. Здравоохранение сообщества Fam . 2008 июль-сен. 31 (3): 247-54. [Медлайн]. [Полный текст].

  • [Рекомендации] Евсевар Д.С., Браун Г.А., Джонс Д.Л., Мацкин Е.Г., Маннер П.А., Муар П. и др. Основанное на фактических данных руководство Американской академии хирургов-ортопедов по лечению остеоартроза коленного сустава, 2-е издание. J Bone Joint Surg Am . 2013 16 октября. 95 (20): 1885-6. [Медлайн]. [Полный текст].

  • Киркли А., Бирмингем ТБ, Личфилд РБ, Гиффин Дж. Р., Уиллитс К. Р., Вонг С. Дж. И др.Рандомизированное исследование артроскопической хирургии остеоартрита коленного сустава. N Engl J Med . 2008 11 сентября. 359 (11): 1097-107. [Медлайн].

  • Маркс Р.Г. Артроскопическая хирургия коленного сустава ?. Медицинский журнал Новой Англии . 2008. Vol. 359: 1169-1170. [Полный текст].

  • Barclay L, Nghiem HT. Артроскопическая хирургия может не помочь при остеоартрите коленного сустава. Medscape. Доступно на http://www.medscape.com/viewarticle/580300.Доступ: 29 сентября 2010 г.

  • Pagenstert G, Knupp M, Valderrabano V, Hintermann B. Операция по коррекции вальгусного остеоартрита голеностопного сустава. Опер Ортоп Травматол . 2009 21 марта (1): 77-87. [Медлайн].

  • Pipino G, Indelli PF, Tigani D, Maffei G, Vaccarisi D. Высокая остеотомия большеберцовой кости с открытием клина: исследование продолжительностью от семи до двенадцати лет. Суставы . 2016 13 июня. 4 (1): 6-11. [Медлайн].

  • Дарас М., Маколей В.Тотальное эндопротезирование тазобедренного сустава у молодых пациентов с остеоартрозом. Am J Orthop (Бель Мид, штат Нью-Джерси) . 2009 Март 38 (3): 125-9. [Медлайн].

  • Куо А., Эззет К.А., Патил С., Колвелл К.В. Младший. Тотальная артропластика тазобедренного сустава при быстро деструктивном остеоартрите бедра: серия случаев. HSS J . 2009 Сентябрь 5 (2): 117-9. [Медлайн]. [Полный текст].

  • Reichenbach S, Rutjes AW, Nüesch E, Trelle S, Jüni P. Промывание суставов при остеоартрите коленного сустава. Кокрановская база данных Syst Rev . 2010 г. 12 мая. CD007320. [Медлайн].

  • Фелсон Д.Т., Ниу Дж., Клэнси М., Алиабади П., Сак Б., Гермази А. и др. Низкий уровень витамина D и обострение остеоартроза коленного сустава: результаты двух продольных исследований. Rheum артрита . 2007 Январь 56 (1): 129-36. [Медлайн].

  • Bergink AP, Uitterlinden AG, Van Leeuwen JP, Buurman CJ, Hofman A, Verhaar JA и др. Статус витамина D, минеральная плотность костей и развитие рентгенологического остеоартрита коленного сустава: Роттердамское исследование. J Clin Rheumatol . 2009 15 августа (5): 230-7. [Медлайн].

  • Canter PH, Wider B, Ernst E. Антиоксидантные витамины A, C, E и селен в лечении артрита: систематический обзор рандомизированных клинических испытаний. Ревматология (Оксфорд) . 2007 августа 46 (8): 1223-33. [Медлайн].

  • Peregoy J, Wilder FV. Влияние добавок витамина С на случайный и прогрессирующий остеоартрит коленного сустава: продольное исследование. Нутрь для общественного здравоохранения . 2011 г., 14 (4): 709-15. [Медлайн].

  • Арши А., Петрильяно Ф.А., Уильямс Р.Дж., Джонс К.Дж. Лечение стволовыми клетками дефектов суставного хряща коленного сустава и остеоартрита. Текущие обзоры по опорно-двигательной медицине . 21 января 2020 г. [Полный текст].

  • Kraeutler MJ, Mitchell JJ, Chahla J, McCarty EC, Pascual-Garrido C. Внутрисуставная имплантация мезенхимальных стволовых клеток, Часть 2: Обзор литературы по регенерации мениска. Orthop J Sports Med . 2017 19 января. 5 (1): 2325

    6680814. [Медлайн]. [Полный текст].

  • Харрисон Л. Лечение подозрением на стволовые клетки при артрите коленного сустава. Медицинские новости Medscape. Доступно на https://www.medscape.com/viewarticle/8

    . 8 марта 2018 г .; Доступ: 14 марта 2018 г.

  • [Рекомендации] Коласински С.Л., Неоги Т., Хохберг М.С. и др. Руководство Американского колледжа ревматологии / Фонда артрита по лечению остеоартрита кисти, бедра и колена, 2019 г. Ревматический артрит . 2020 6 января [Medline]. [Полный текст].

  • [Рекомендации] Баннуру Р.Р., Осани М.К., Вайсброт Е.Е., Арден Н.К., Беннелл К., Бирма-Зейнстра СМА и др. Рекомендации OARSI по безоперационному лечению коленного, тазобедренного и полиартикулярного остеоартрита. Хрящевой артроз . 2019 г. 3 июля [Medline]. [Полный текст].

  • [Рекомендации] Вебер К.Л., Евсевар Д.С., МакГрори Б.Дж. Руководство по клинической практике AAOS: Хирургическое лечение остеоартроза коленного сустава: рекомендации, основанные на фактах. J Am Acad Orthop Surg . 2016, 28 июня. [Medline]. [Полный текст].

  • Хакенталь В. Первые рекомендации по остеоартриту тазобедренного сустава от AAOS. Медицинские новости Medscape. Доступно на http://www.medscape.com/viewarticle/878593. 13 апреля 2017 г .; Доступ: 15 мая 2017 г.

  • [Рекомендации] Американская академия хирургов-ортопедов. Управление остеоартритом тазобедренного сустава: научно обоснованное руководство по клинической практике. AAOS. Доступно на https://www.aaos.org / uploadedFiles / PreProduction / Quality / Guidelines_and_Reviews / OA% 20Hip% 20CPG_3.13.17.pdf. 13 марта 2017 г .; Доступ: 15 марта 2019 г.

  • Brooks M. Диклофенак для местного применения 2% (Pennsaid) от боли при остеоартрите коленного сустава очищает FDA. Medscape [сериал онлайн]. Доступно на http://www.medscape.com/viewarticle/819436. Доступ: 26 января 2014 г.

  • Гибофски А., Хохберг М.С., Ярош М.Дж., Янг К.Л. Эффективность и безопасность низких доз субмикронного диклофенака для лечения боли при остеоартрите: исследование фазы 3, 12 недель. Curr Med Res Opin . 2014 6. 1–11 августа. [Медлайн].

  • Миллер М., Штюрмер Т., Азраэль Д., Левин Р., Соломон Д.Х. Опиоидные анальгетики и риск переломов у пожилых людей с артритом. Дж. Ам Гериатр Соц . 2011 Март 59 (3): 430-8. [Медлайн].

  • Chondroprotective Agent — обзор

    Функциональные ингредиенты

    Функциональные ингредиенты — это диетические компоненты, которые включаются в пищу с целью обеспечения определенного типа пользы для здоровья.Эти ингредиенты стали очень популярными в рационе человека, отчасти из-за принятия в 1994 году Закона о дополнительном питании и образовании (DSHEA). эти продукты на рынке продуктов питания для людей. В последние годы этот интерес расширился на рационы домашних животных. 65 Хотя CVM утверждает, что DSHEA не распространяется на корма для домашних животных, оно, как правило, допускает включение функциональных ингредиентов, которые состоят из ингредиентов или питательных веществ, одобренных AAFCO, и в отношении которых не делаются конкретные ветеринарные заявления о здоровье.В настоящее время все компоненты кормов для домашних животных должны классифицироваться либо как кормовые ингредиенты (одобренные или признанные AAFCO), либо как лекарственные средства. Следовательно, если CVM определяет, что заявка на этикетку корма для домашних животных о функциональном ингредиенте представляет собой заявление о лекарстве в отличие от общего заявления о пользе для здоровья, они могут вмешаться и потребовать, чтобы ингредиент был классифицирован как лекарство и прошел необходимые испытания и одобрение. 66 Например, хотя утверждение «поддерживает здоровье суставов» может быть приемлемым для пищевых продуктов, которые включают хондропротекторные агенты, такие как хондроитинсульфат и глюкозамин, утверждение, которое гласит «уменьшает воспаление суставов» или «уменьшает хромоту», недопустимо.

    Как и пищевые продукты для людей, в корма для домашних животных в качестве функциональных ингредиентов включены разнообразные микро- и макроэлементы, комбинации питательных веществ и новые ингредиенты. Контролируемые исследования, дающие эмпирические данные о пользе для здоровья, доступны для некоторых, но не для всех из этих соединений. Кроме того, поскольку некоторые комбинации питательных веществ являются собственностью, результаты исследований могут не публиковаться или, как правило, недоступны для широкой публики. Компании по производству кормов для домашних животных и диетологи в академических кругах продолжают изучать функциональное использование комбинаций питательных веществ и новых ингредиентов по мере их выявления.В настоящее время основные категории воздействия на здоровье домашних животных, на которые нацелены меры, включают здоровье суставов, состояние кожи и шерсти, работу желудочно-кишечного тракта, иммунную систему, здоровье нижних мочевыводящих путей и ожирение.

    Два функциональных ингредиента, которые широко используются в качестве хондрозащитных агентов для здоровья суставов в кормах для людей и домашних животных, — это глюкозамин и хондроитинсульфат. К другим относятся порошок мидий с зелеными губами (источник гликозаминогликанов, омега-3 жирных кислот и других питательных веществ) и коллаген типа UC-II (см. Главу 37, стр.503-504 для полного обсуждения). Кормление домашних животных для поддержания здорового состояния кожи и шерсти уже много лет находится в центре внимания диетологов и владельцев домашних животных. Владельцы могут уделять особое внимание состоянию шерсти, поскольку ее блеск и здоровье кожи воспринимаются как барометр общего состояния здоровья питомца. Функциональные ингредиенты, которые были изучены на предмет их ценности для здоровья кожи, включают измененные уровни жирных кислот омега-3 и омега-6, конъюгированную линолевую кислоту и формулы, в которых сочетаются различные масла и витамины группы B (см. Главу 31, стр.386-394 для полного обсуждения). Функцию желудочно-кишечного тракта можно поддерживать за счет включения определенных типов комбинаций клетчатки и выбора пребиотиков, таких как фруктоолигосахарид и маннанолигосахарид. 67 Комбинации волокон также включены в корм для кошек для борьбы с комками шерсти. Другим подходом к здоровью желудочно-кишечного тракта является использование пробиотиков, которые представляют собой препараты определенных видов бактерий, которые действуют, благоприятно изменяя микробный баланс толстого кишечника. 68 На действие пробиотиков влияет множество факторов, и механизм их действия, по-видимому, многогранен. Опубликованные исследования на людях и все чаще на собаках и кошках показывают, что пробиотики имеют ценность как функциональные ингредиенты, способствующие здоровью желудочно-кишечного тракта, а также могут принести пользу здоровью кожи и иммунной функции (полное обсуждение см. В главе 35, стр. 470-472). Функциональные ингредиенты, поддерживающие здоровье нижних отделов мочевыводящих путей у кошек, включают агенты, которые могут контролировать воспаление мочевыводящих путей и снижать риск развития уролитов (см. Главу 30).Наконец, высокая распространенность избыточного веса у собак-компаньонов и кошек привела к исследованию множества функциональных ингредиентов, которые могут помочь предотвратить чрезмерное увеличение веса и помочь контролировать гликемический ответ (см. Главы 28 и 29, Глава 28, Глава 29).

    Функциональные ингредиенты включаются в корма для домашних животных с целью обеспечения определенной пользы для здоровья. Как и в случае с пищей для человека, в качестве функциональных ингредиентов включены разнообразные микро- и макроэлементы, комбинации питательных веществ и новые ингредиенты.Основные категории воздействия на здоровье домашних животных, на которые нацелено воздействие, включают здоровье суставов, состояние кожи и шерсти, работу желудочно-кишечного тракта, иммунную систему, здоровье нижних мочевыводящих путей и ожирение.

    Хондропротекторный агент — обзор

    Другие рецепторы клеточной поверхности в хондроцитах

    Другие интегральные мембранные белки, обнаруженные в хондроцитах, включают клеточную детерминанту 44 (CD44), аннексины, синдеканы и рецептор дискоидинового домена 2 (DDR2). CD44, рецептор гиалуронана, связывает коллаген и фибронектин.Благодаря специфическим взаимодействиям с гиалуронаном CD44 играет роль в сборке, организации и поддержании перицеллюлярного матрикса хондроцитов. Экспрессия CD44 повышается в хондроцитах суставного хряща пациентов с РА и экспериментальным ОА. Хондропротекторы и анаболические факторы могут улучшить разрушение хрящевого матрикса за счет уменьшения фрагментации CD44, которая нарушает взаимодействия гиалуронана-CD44 и оказывает неблагоприятное воздействие на перицеллюлярный матрикс. 53,54

    Аннексин V, также известный как аннексин CII, представляет собой интегральный мембранный белок 34 кДа, который связывает коллаген типа II и имеет большую гомологию с кальцийсвязывающими белками кальпактином и липокортином.Аннексины II, V и VI были обнаружены в хондроцитах, где они, вероятно, играют роль в физиологической минерализации скелетных тканей и в патологической минерализации суставного хряща. Аннексин V был впервые обнаружен в курином хряще и был описан как связывающий коллаген белок типа II, который прикрепляет хондроциты к ВКМ. В хондроцитах ростовой пластинки аннексины необходимы для поглощения ионов кальция и последующей минерализации. 55 Аннексин A6 высоко экспрессируется в хряще OA и играет роль в катаболической передаче сигналов. 56

    Syndecans играют важную роль во время развития хряща и гомеостаза. Синдеканы связываются с поверхностью клетки через гликозилфосфатидилинозитол и связывают факторы роста, протеиназы и ингибиторы, а также молекулы матрикса через боковые цепи гепарансульфата во внеклеточном домене. 57 Синдекан-1, синдекан-3 и синдекан-4 активируются в хряще ОА. Синдекан-4 является положительным эффектором активности аггрекана, контролируя синтез стромелизина, ММР-3.

    В отличие от интегринов, которые связывают фрагменты коллагена, DDR2 специфически связывается с фибриллами коллагена типа II и X, что приводит к активации его интегральной рецепторной тирозинкиназы. DDR2 активируется в хряще OA и специфически индуцирует экспрессию MMP-13, связанную с расщеплением коллагена типа II.

    Leave a Comment

    Ваш адрес email не будет опубликован. Обязательные поля помечены *