Рентгеновские лучи это: лучи — это… Что такое Х-лучи?

Содержание

лучи — это… Что такое Х-лучи?

Рентге́новское излуче́ние — электромагнитные волны, энергия фотонов которых лежит на энергетической шкале между ультрафиолетовым излучением и гамма-излучением, что соответствует длинам волн от 10−4 до 10² Å (от 10−14 до 10−8м).

Положение на шкале электромагнитных волн

Энергетические диапазоны рентгеновского излучения и гамма-излучения перекрываются в широкой области энергий. Оба типа излучения являются электромагнитным излучением и при одинаковой энергии фотонов — эквивалентны. Терминологическое различие лежит в способе возникновения — рентгеновские лучи испускаются при участии электронов (либо в атомах, либо свободных) в то время как гамма-излучение испускается в процессах девозбуждения атомных ядер. Фотоны рентгеновского излучения имеют энергию от 100 эВ до 250 кэВ, что соответствует излучению с частотой от 3·1016 Гц до 6·1019 Гц и длиной волны 0,005 — 10 нм (общепризнанного определения нижней границы диапазона рентгеновских лучей в шкале длин волн не существует).

Мягкий рентген характеризуется наименьшей энергией фотона и частотой излучения (и наибольшей длиной волны), а жёсткий рентген обладает наибольшей энергией фотона и частотой излучения (и наименьшей длиной волны). Жёсткий рентген используется преимущественно в промышленных целях.

Получение

Схематическое изображение рентгеновской трубки. X — рентгеновские лучи, K — катод, А — анод (иногда называемый антикатодом), С — теплоотвод, Uh — напряжение накала катода, Ua — ускоряющее напряжение, Win — впуск водяного охлаждения, Wout — выпуск водяного охлаждения (см. рентгеновская трубка).

Рентгеновские лучи возникают при сильном ускорении заряженных частиц (тормозное излучение), либо при высокоэнергетичных переходах в электронных оболочках атомов или молекул. Оба эффекта используются в рентгеновских трубках, в которых электроны, испущенные катодом, ускоряются под действием разности электрических потенциалов между анодом и катодом (при этом рентгеновские лучи не испускаются, т. к. ускорение слишком мало) и ударяются об анод, где они резко тормозятся (при этом испускаются рентгеновские лучи: т. е. тормозное излучение) и в то же время выбивают электроны из внутренних электронных оболочек атомов анода. Пустые места в оболочках занимаются другими электронами атома. При этом испускается рентгеновское излучение с характерным для материала анода спектром энергий (характеристическое излучение, частоты определяются законом Мозли: где

Z — атомный номер элемента анода, A и B — константы для определённого значения главного квантового числа n электронной оболочки). В настоящее время аноды изготовляются главным образом из керамики, причём та их часть, куда ударяют электроны, — из молибдена.

В процессе ускорения-торможения лишь около 1% кинетической энергии электрона идёт на рентгеновское излучение, 99 % энергии превращается в тепло.

Рентгеновское излучение можно получать также и на ускорителях заряженных частиц. Т. н. синхротронное излучение возникает при отклонении пучка частиц в магнитном поле, в результате чего они испытывают ускорение в направлении, перпендикулярном их движению. Синхротронное излучение имеет сплошной спектр с верхней границей. При соответствующим образом выбранных параметрах (величина магнитного поля и энергия частиц) в спектре синхротронного излучения можно получить и рентгеновские лучи.

Длины волн спектральных линий K-серий (нм) для ряда анодных материалов.[1],[2]
Kα₁ Kα₂ Kβ₁ Kβ₂
Fe 0,193735 0,193604 0,193998 0,17566 0,17442
Cu 0,154184 0,154056 0,154439 0,139222 0,138109
Ag 0,0560834 0,0559363 0,0563775
Cr 0,2291 0,22897 0,229361
Co 0,179026 0,178897 0,179285
Mo 0,071073 0,07093 0,071359
W 0,0210599 0,0208992 0,0213813
Zr 0,078593 0,079015 0,070173 0,068993
Ni 0,165791 0,166175 0,15001 0,14886

Взаимодействие с веществом

Длина волны рентгеновских лучей сравнима с размерами атомов, поэтому не существует материала, из которого можно было бы изготовить линзу для рентгеновских лучей. Кроме того, при перпендикулярном падении на поверхность рентгеновские лучи почти не отражаются. Несмотря на это, в рентгеновской оптике были найдены способы построения оптических элементов для рентгеновских лучей.

Рентгеновские лучи могут проникать сквозь вещество, причём различные вещества по-разному их поглощают. Поглощение рентгеновских лучей является важнейшим их свойством в рентгеновской съёмке. Интенсивность рентгеновских лучей экспоненциально убывает в зависимости от пройденного пути в поглощающем слое (

I = I0e-kd, где d — толщина слоя, коэффициент k пропорционален Z³λ³, Z — атомный номер элемента, λ — длина волны).

Поглощение происходит в результате фотопоглощения (фотоэффекта) и комптоновского рассеяния:

  • Под фотопоглощением понимается процесс выбивания фотоном электрона из оболочки атома, для чего требуется, чтобы энергия фотона была больше некоторого минимального значения. Если рассматривать вероятность акта поглощения в зависимости от энергии фотона, то при достижении определённой энергии она (вероятность) резко возрастает до своего максимального значения. Для более высоких значений энергии вероятность непрерывно уменьшается. По причине такой зависимости говорят, что существует
    граница поглощения
    . Место выбитого при акте поглощения электрона занимает другой электрон, при этом испускается излучение с меньшей энергией фотона, происходит т. н. процесс флюоресценции.
  • Рентгеновский фотон может взаимодействовать не только со связанными электронами, но и со свободными, а также слабосвязанными электронами. Происходит рассеяние фотонов на электронах — т. н. комптоновское рассеяние. В зависимости от угла рассеяния, длина волны фотона увеличивается на определённую величину и, соответственно, энергия уменьшается. Комптоновское рассеяние, по сравнению с фотопоглощением, становится преобладающим при более высоких энергиях фотона.


В дополнение к названным процессам существует ещё одна принципиальная возможность поглощения — за счёт возникновения электрон-позитронных пар. Однако для этого необходимы энергии более 1,022 МэВ, которые лежат вне вышеобозначенной границы рентгеновского излучения (<250 кэВ)

Биологическое воздействие

Рентгеновское излучение является ионизирующим. Оно воздействует на ткани живых организмов и может быть причиной лучевой болезни, лучевых ожогов и злокачественных опухолей. По причине этого при работе с рентгеновским излучением необходимо соблюдать меры защиты. Считается, что поражение прямо пропорционально поглощённой дозе излучения. Рентгеновское излучение является мутагенным фактором.

Регистрация

  • Эффект люминесценции. Рентгеновские лучи способны вызывать у некоторых веществ свечение (флюоресценцию). Этот эффект используется в медицинской диагностике при рентгеноскопии (наблюдение изображения на флюоресцирующем экране) и рентгеновской съёмке (рентгенографии). Медицинские фотоплёнки, как правило, применяются в комбинации с усиливающими экранами, в состав которых входят рентгенолюминофоры, которые светятся под действием рентгеновского излучения и засвечивает светочувствительную фотоэмульсию. Метод получения изображения в натуральную величину называется рентгенографией. При флюорографии изображение получается в уменьшенном масштабе. Люминесцирующее вещество (сцинтиллятор) можно оптически соединить с электронным детектором светового излучения (фотоэлектронный умножитель, фотодиод и т. п.), полученный прибор называется сцинтилляционным детектором. Он позволяет регистрировать отдельные фотоны и измерять их энергию, поскольку энергия сцинтилляционной вспышки пропорциональна энергии поглощённого фотона.
  • Фотографический эффект. Рентгеновские лучи, также как и обычный свет, способны напрямую засвечивать фотографическую эмульсию. Однако без флюоресцирующего слоя для этого требуется в 30—100 раз большая экспозиция (т.е. доза). Преимуществом этого метода (известного под названием безэкранная рентгенография) является бо́льшая резкость изображения.
  • В полупроводниковых детекторах рентгеновские лучи производят пары электрон-дырка в p-n переходе диода, включённого в запирающем направлении. При этом протекает небольшой ток, амплитуда которого пропорциональна энергии и интенсивности падающего рентгеновского излучения. В импульсном режиме возможна регистрация отдельных рентгеновских фотонов и измерение их энергии.
  • Отдельные фотоны рентгеновского излучения могут быть также зарегистрированы при помощи газонаполненных детекторов ионизирующего излучения (счётчик Гейгера, пропорциональная камера и др.).

Применение

При помощи рентгеновских лучей можно «просветить» человеческое тело, в результате чего можно получить изображение костей, а в современных приборах и внутренних органов (см. также рентген). При этом используется тот факт, что у содержащегося преимущественно в костях элемента кальция (Z=20) атомный номер гораздо больше, чем атомные номера элементов, из которых состоят мягкие ткани, а именно водорода (Z=1), углерода (Z=6), азота (Z=7), кислорода (Z=8). Кроме обычных приборов, которые дают двумерную проекцию исследуемого объекта, существуют компьютерные томографы, которые позволяют получать объёмное изображение внутренних органов.

Выявление дефектов в изделиях (рельсах, сварочных швах и т. д.)) с помощью рентгеновского излучения называется рентгеновской дефектоскопией.

В материаловедении, кристаллографии, химии и биохимии рентгеновские лучи используются для выяснения структуры веществ на атомном уровне при помощи дифракционного рассеяния рентгеновского излучения (рентгеноструктурный анализ). Известным примером является определение структуры ДНК.

Кроме того, при помощи рентгеновских лучей может быть определён химический состав вещества. В электронно-лучевом микрозонде (либо же в электронном микроскопе) анализируемое вещество облучается электронами, при этом атомы ионизируются и излучают характеристическое рентгеновское излучение. Вместо электронов может использоваться рентгеновское излучение. Этот аналитический метод называется рентгенофлуоресцентным анализом.

В аэропортах активно применяются рентгенотелевизионные интроскопы, позволяющие просматривать содержимое ручной клади и багажа в целях визуального обнаружения на экране монитора предметов, представляющих опасность.

Естественное рентгеновское излучение

На Земле электромагнитное излучение в рентгеновском диапазоне образуется в результате ионизации атомов излучением, которое возникает при радиоактивном распаде, а также космическим излучением. Радиоактивный распад также приводит к непосредственному излучению рентгеновских квантов, если вызывает перестройку электронной оболочки распадающегося атома (например, при электронном захвате). Рентгеновское излучение, которое возникает на других небесных телах, не достигает поверхности Земли, т. к. полностью поглощается атмосферой. Оно исследуется спутниковыми рентгеновскими телескопами, такими как Чандра и XMM-Ньютон.

История открытия

Рентгеновская фотография (рентгенограмма) руки своей жены, сделанная В. К. Рентгеном

Открытие рентгеновского излучения приписывается Вильгельму Конраду Рёнтгену. Он был первым, кто опубликовал статью о рентгеновских лучах, которые он назвал икс-лучами (x-ray). Статья Рентгена под названием «О новом типе лучей» была опубликована 28-го декабря 1895 года в журнале Вюрцбургского физико-медицинского общества. Считается, однако, доказанным, что рентгеновские лучи были уже получены до этого. Катодолучевая трубка, которую Рентген использовал в своих экспериментах, была разработана Й. Хитторфом и В. Круксом. При работе этой трубки возникают рентгеновские лучи. Это было показано в экспериментах Крукса и с 1892 года в экспериментах Генриха Герца и его ученика Филиппа Ленарда через почернение фотопластинок. Однако никто из них не осознал значения сделанного ими открытия и не опубликовал своих результатов.

По этой причине Рентген не знал о сделанных до него открытиях и открыл лучи, названные впоследствие его именем, независимо — при наблюдении флюоресценции, возникающей при работе катодолучевой трубки. Рентген занимался Х-лучами немногим более года (с 8 ноября 1895 года по март 1897 года) и опубликовал о них три статьи, в которых было исчерпывающее описание новых лучей, впоследствии сотни работ его последователей, опубликованных затем на протяжении 12 лет, не могли ни прибавить, ни изменить ничего существенного. Рентген, потерявший интерес к Х-лучам, говорил своим коллегам: «Я уже всё написал, не тратьте зря время». Свой вклад в известность Рентгена внесла также знаменитая фотография руки его жены, которую он опубликовал в своей статье (см. изображение справа). За открытие рентгеновских лучей Рентгену в 1901 году была присуждена первая Нобелевская премия по физике, причём нобелевский комитет подчёркивал практическую важность его открытия. В 1896 году впервые было употреблено название «рентгеновские лучи». В некоторых странах осталось старое название — X-лучи. В России лучи стали называть «рентгеновскими» по инициативе ученика В. К. Рентгена — Абрама Фёдоровича Иоффе.

Сноски

  1. CRC Handbook of Chemistry and Physics 75th ed. David R. Lide P.10-227. CRC Press ISBN 0-8493-0475-X
  2. Crystallographica, v1.60a. Oxford Cryosystems 1995—1999.

Ссылки

Wikimedia Foundation. 2010.

лучи — это… Что такое Х-лучи?

Рентге́новское излуче́ние — электромагнитные волны, энергия фотонов которых лежит на энергетической шкале между ультрафиолетовым излучением и гамма-излучением, что соответствует длинам волн от 10−4 до 10² Å (от 10−14 до 10−8м).

Положение на шкале электромагнитных волн

Энергетические диапазоны рентгеновского излучения и гамма-излучения перекрываются в широкой области энергий. Оба типа излучения являются электромагнитным излучением и при одинаковой энергии фотонов — эквивалентны. Терминологическое различие лежит в способе возникновения — рентгеновские лучи испускаются при участии электронов (либо в атомах, либо свободных) в то время как гамма-излучение испускается в процессах девозбуждения атомных ядер. Фотоны рентгеновского излучения имеют энергию от 100 эВ до 250 кэВ, что соответствует излучению с частотой от 3·1016 Гц до 6·1019 Гц и длиной волны 0,005 — 10 нм (общепризнанного определения нижней границы диапазона рентгеновских лучей в шкале длин волн не существует). Мягкий рентген характеризуется наименьшей энергией фотона и частотой излучения (и наибольшей длиной волны), а жёсткий рентген обладает наибольшей энергией фотона и частотой излучения (и наименьшей длиной волны). Жёсткий рентген используется преимущественно в промышленных целях.

Получение

Схематическое изображение рентгеновской трубки. X — рентгеновские лучи, K — катод, А — анод (иногда называемый антикатодом), С — теплоотвод, Uh — напряжение накала катода, Ua — ускоряющее напряжение, Win — впуск водяного охлаждения, Wout — выпуск водяного охлаждения (см. рентгеновская трубка).

Рентгеновские лучи возникают при сильном ускорении заряженных частиц (тормозное излучение), либо при высокоэнергетичных переходах в электронных оболочках атомов или молекул. Оба эффекта используются в рентгеновских трубках, в которых электроны, испущенные катодом, ускоряются под действием разности электрических потенциалов между анодом и катодом (при этом рентгеновские лучи не испускаются, т. к. ускорение слишком мало) и ударяются об анод, где они резко тормозятся (при этом испускаются рентгеновские лучи: т. е. тормозное излучение) и в то же время выбивают электроны из внутренних электронных оболочек атомов анода. Пустые места в оболочках занимаются другими электронами атома. При этом испускается рентгеновское излучение с характерным для материала анода спектром энергий (характеристическое излучение, частоты определяются законом Мозли: где Z — атомный номер элемента анода, A и B — константы для определённого значения главного квантового числа n электронной оболочки). В настоящее время аноды изготовляются главным образом из керамики, причём та их часть, куда ударяют электроны, — из молибдена.

В процессе ускорения-торможения лишь около 1% кинетической энергии электрона идёт на рентгеновское излучение, 99 % энергии превращается в тепло.

Рентгеновское излучение можно получать также и на ускорителях заряженных частиц. Т. н. синхротронное излучение возникает при отклонении пучка частиц в магнитном поле, в результате чего они испытывают ускорение в направлении, перпендикулярном их движению. Синхротронное излучение имеет сплошной спектр с верхней границей. При соответствующим образом выбранных параметрах (величина магнитного поля и энергия частиц) в спектре синхротронного излучения можно получить и рентгеновские лучи.

Длины волн спектральных линий K-серий (нм) для ряда анодных материалов.[1],[2]
Kα₁ Kα₂ Kβ₁ Kβ₂
Fe 0,193735 0,193604 0,193998 0,17566 0,17442
Cu 0,154184 0,154056 0,154439 0,139222 0,138109
Ag 0,0560834 0,0559363 0,0563775
Cr 0,2291 0,22897 0,229361
Co 0,179026 0,178897 0,179285
Mo 0,071073 0,07093 0,071359
W 0,0210599 0,0208992 0,0213813
Zr 0,078593 0,079015 0,070173 0,068993
Ni 0,165791 0,166175 0,15001 0,14886

Взаимодействие с веществом

Длина волны рентгеновских лучей сравнима с размерами атомов, поэтому не существует материала, из которого можно было бы изготовить линзу для рентгеновских лучей. Кроме того, при перпендикулярном падении на поверхность рентгеновские лучи почти не отражаются. Несмотря на это, в рентгеновской оптике были найдены способы построения оптических элементов для рентгеновских лучей.

Рентгеновские лучи могут проникать сквозь вещество, причём различные вещества по-разному их поглощают. Поглощение рентгеновских лучей является важнейшим их свойством в рентгеновской съёмке. Интенсивность рентгеновских лучей экспоненциально убывает в зависимости от пройденного пути в поглощающем слое (I = I0e-kd, где d — толщина слоя, коэффициент k пропорционален Z³λ³, Z — атомный номер элемента, λ — длина волны).

Поглощение происходит в результате фотопоглощения (фотоэффекта) и комптоновского рассеяния:

  • Под фотопоглощением понимается процесс выбивания фотоном электрона из оболочки атома, для чего требуется, чтобы энергия фотона была больше некоторого минимального значения. Если рассматривать вероятность акта поглощения в зависимости от энергии фотона, то при достижении определённой энергии она (вероятность) резко возрастает до своего максимального значения. Для более высоких значений энергии вероятность непрерывно уменьшается. По причине такой зависимости говорят, что существует граница поглощения. Место выбитого при акте поглощения электрона занимает другой электрон, при этом испускается излучение с меньшей энергией фотона, происходит т. н. процесс флюоресценции.
  • Рентгеновский фотон может взаимодействовать не только со связанными электронами, но и со свободными, а также слабосвязанными электронами. Происходит рассеяние фотонов на электронах — т. н. комптоновское рассеяние. В зависимости от угла рассеяния, длина волны фотона увеличивается на определённую величину и, соответственно, энергия уменьшается. Комптоновское рассеяние, по сравнению с фотопоглощением, становится преобладающим при более высоких энергиях фотона.


В дополнение к названным процессам существует ещё одна принципиальная возможность поглощения — за счёт возникновения электрон-позитронных пар. Однако для этого необходимы энергии более 1,022 МэВ, которые лежат вне вышеобозначенной границы рентгеновского излучения (<250 кэВ)

Биологическое воздействие

Рентгеновское излучение является ионизирующим. Оно воздействует на ткани живых организмов и может быть причиной лучевой болезни, лучевых ожогов и злокачественных опухолей. По причине этого при работе с рентгеновским излучением необходимо соблюдать меры защиты. Считается, что поражение прямо пропорционально поглощённой дозе излучения. Рентгеновское излучение является мутагенным фактором.

Регистрация

  • Эффект люминесценции. Рентгеновские лучи способны вызывать у некоторых веществ свечение (флюоресценцию). Этот эффект используется в медицинской диагностике при рентгеноскопии (наблюдение изображения на флюоресцирующем экране) и рентгеновской съёмке (рентгенографии). Медицинские фотоплёнки, как правило, применяются в комбинации с усиливающими экранами, в состав которых входят рентгенолюминофоры, которые светятся под действием рентгеновского излучения и засвечивает светочувствительную фотоэмульсию. Метод получения изображения в натуральную величину называется рентгенографией. При флюорографии изображение получается в уменьшенном масштабе. Люминесцирующее вещество (сцинтиллятор) можно оптически соединить с электронным детектором светового излучения (фотоэлектронный умножитель, фотодиод и т. п.), полученный прибор называется сцинтилляционным детектором. Он позволяет регистрировать отдельные фотоны и измерять их энергию, поскольку энергия сцинтилляционной вспышки пропорциональна энергии поглощённого фотона.
  • Фотографический эффект. Рентгеновские лучи, также как и обычный свет, способны напрямую засвечивать фотографическую эмульсию. Однако без флюоресцирующего слоя для этого требуется в 30—100 раз большая экспозиция (т.е. доза). Преимуществом этого метода (известного под названием безэкранная рентгенография) является бо́льшая резкость изображения.
  • В полупроводниковых детекторах рентгеновские лучи производят пары электрон-дырка в p-n переходе диода, включённого в запирающем направлении. При этом протекает небольшой ток, амплитуда которого пропорциональна энергии и интенсивности падающего рентгеновского излучения. В импульсном режиме возможна регистрация отдельных рентгеновских фотонов и измерение их энергии.
  • Отдельные фотоны рентгеновского излучения могут быть также зарегистрированы при помощи газонаполненных детекторов ионизирующего излучения (счётчик Гейгера, пропорциональная камера и др.).

Применение

При помощи рентгеновских лучей можно «просветить» человеческое тело, в результате чего можно получить изображение костей, а в современных приборах и внутренних органов (см. также рентген). При этом используется тот факт, что у содержащегося преимущественно в костях элемента кальция (Z=20) атомный номер гораздо больше, чем атомные номера элементов, из которых состоят мягкие ткани, а именно водорода (Z=1), углерода (Z=6), азота (Z=7), кислорода (Z=8). Кроме обычных приборов, которые дают двумерную проекцию исследуемого объекта, существуют компьютерные томографы, которые позволяют получать объёмное изображение внутренних органов.

Выявление дефектов в изделиях (рельсах, сварочных швах и т. д.)) с помощью рентгеновского излучения называется рентгеновской дефектоскопией.

В материаловедении, кристаллографии, химии и биохимии рентгеновские лучи используются для выяснения структуры веществ на атомном уровне при помощи дифракционного рассеяния рентгеновского излучения (рентгеноструктурный анализ). Известным примером является определение структуры ДНК.

Кроме того, при помощи рентгеновских лучей может быть определён химический состав вещества. В электронно-лучевом микрозонде (либо же в электронном микроскопе) анализируемое вещество облучается электронами, при этом атомы ионизируются и излучают характеристическое рентгеновское излучение. Вместо электронов может использоваться рентгеновское излучение. Этот аналитический метод называется рентгенофлуоресцентным анализом.

В аэропортах активно применяются рентгенотелевизионные интроскопы, позволяющие просматривать содержимое ручной клади и багажа в целях визуального обнаружения на экране монитора предметов, представляющих опасность.

Естественное рентгеновское излучение

На Земле электромагнитное излучение в рентгеновском диапазоне образуется в результате ионизации атомов излучением, которое возникает при радиоактивном распаде, а также космическим излучением. Радиоактивный распад также приводит к непосредственному излучению рентгеновских квантов, если вызывает перестройку электронной оболочки распадающегося атома (например, при электронном захвате). Рентгеновское излучение, которое возникает на других небесных телах, не достигает поверхности Земли, т. к. полностью поглощается атмосферой. Оно исследуется спутниковыми рентгеновскими телескопами, такими как Чандра и XMM-Ньютон.

История открытия

Рентгеновская фотография (рентгенограмма) руки своей жены, сделанная В. К. Рентгеном

Открытие рентгеновского излучения приписывается Вильгельму Конраду Рёнтгену. Он был первым, кто опубликовал статью о рентгеновских лучах, которые он назвал икс-лучами (x-ray). Статья Рентгена под названием «О новом типе лучей» была опубликована 28-го декабря 1895 года в журнале Вюрцбургского физико-медицинского общества. Считается, однако, доказанным, что рентгеновские лучи были уже получены до этого. Катодолучевая трубка, которую Рентген использовал в своих экспериментах, была разработана Й. Хитторфом и В. Круксом. При работе этой трубки возникают рентгеновские лучи. Это было показано в экспериментах Крукса и с 1892 года в экспериментах Генриха Герца и его ученика Филиппа Ленарда через почернение фотопластинок. Однако никто из них не осознал значения сделанного ими открытия и не опубликовал своих результатов.

По этой причине Рентген не знал о сделанных до него открытиях и открыл лучи, названные впоследствие его именем, независимо — при наблюдении флюоресценции, возникающей при работе катодолучевой трубки. Рентген занимался Х-лучами немногим более года (с 8 ноября 1895 года по март 1897 года) и опубликовал о них три статьи, в которых было исчерпывающее описание новых лучей, впоследствии сотни работ его последователей, опубликованных затем на протяжении 12 лет, не могли ни прибавить, ни изменить ничего существенного. Рентген, потерявший интерес к Х-лучам, говорил своим коллегам: «Я уже всё написал, не тратьте зря время». Свой вклад в известность Рентгена внесла также знаменитая фотография руки его жены, которую он опубликовал в своей статье (см. изображение справа). За открытие рентгеновских лучей Рентгену в 1901 году была присуждена первая Нобелевская премия по физике, причём нобелевский комитет подчёркивал практическую важность его открытия. В 1896 году впервые было употреблено название «рентгеновские лучи». В некоторых странах осталось старое название — X-лучи. В России лучи стали называть «рентгеновскими» по инициативе ученика В. К. Рентгена — Абрама Фёдоровича Иоффе.

Сноски

  1. CRC Handbook of Chemistry and Physics 75th ed. David R. Lide P.10-227. CRC Press ISBN 0-8493-0475-X
  2. Crystallographica, v1.60a. Oxford Cryosystems 1995—1999.

Ссылки

Wikimedia Foundation. 2010.

лучи — это… Что такое Х-лучи?

Рентге́новское излуче́ние — электромагнитные волны, энергия фотонов которых лежит на энергетической шкале между ультрафиолетовым излучением и гамма-излучением, что соответствует длинам волн от 10−4 до 10² Å (от 10−14 до 10−8м).

Положение на шкале электромагнитных волн

Энергетические диапазоны рентгеновского излучения и гамма-излучения перекрываются в широкой области энергий. Оба типа излучения являются электромагнитным излучением и при одинаковой энергии фотонов — эквивалентны. Терминологическое различие лежит в способе возникновения — рентгеновские лучи испускаются при участии электронов (либо в атомах, либо свободных) в то время как гамма-излучение испускается в процессах девозбуждения атомных ядер. Фотоны рентгеновского излучения имеют энергию от 100 эВ до 250 кэВ, что соответствует излучению с частотой от 3·1016 Гц до 6·1019 Гц и длиной волны 0,005 — 10 нм (общепризнанного определения нижней границы диапазона рентгеновских лучей в шкале длин волн не существует). Мягкий рентген характеризуется наименьшей энергией фотона и частотой излучения (и наибольшей длиной волны), а жёсткий рентген обладает наибольшей энергией фотона и частотой излучения (и наименьшей длиной волны). Жёсткий рентген используется преимущественно в промышленных целях.

Получение

Схематическое изображение рентгеновской трубки. X — рентгеновские лучи, K — катод, А — анод (иногда называемый антикатодом), С — теплоотвод, Uh — напряжение накала катода, Ua — ускоряющее напряжение, Win — впуск водяного охлаждения, Wout — выпуск водяного охлаждения (см. рентгеновская трубка).

Рентгеновские лучи возникают при сильном ускорении заряженных частиц (тормозное излучение), либо при высокоэнергетичных переходах в электронных оболочках атомов или молекул. Оба эффекта используются в рентгеновских трубках, в которых электроны, испущенные катодом, ускоряются под действием разности электрических потенциалов между анодом и катодом (при этом рентгеновские лучи не испускаются, т. к. ускорение слишком мало) и ударяются об анод, где они резко тормозятся (при этом испускаются рентгеновские лучи: т. е. тормозное излучение) и в то же время выбивают электроны из внутренних электронных оболочек атомов анода. Пустые места в оболочках занимаются другими электронами атома. При этом испускается рентгеновское излучение с характерным для материала анода спектром энергий (характеристическое излучение, частоты определяются законом Мозли: где Z — атомный номер элемента анода, A и B — константы для определённого значения главного квантового числа n электронной оболочки). В настоящее время аноды изготовляются главным образом из керамики, причём та их часть, куда ударяют электроны, — из молибдена.

В процессе ускорения-торможения лишь около 1% кинетической энергии электрона идёт на рентгеновское излучение, 99 % энергии превращается в тепло.

Рентгеновское излучение можно получать также и на ускорителях заряженных частиц. Т. н. синхротронное излучение возникает при отклонении пучка частиц в магнитном поле, в результате чего они испытывают ускорение в направлении, перпендикулярном их движению. Синхротронное излучение имеет сплошной спектр с верхней границей. При соответствующим образом выбранных параметрах (величина магнитного поля и энергия частиц) в спектре синхротронного излучения можно получить и рентгеновские лучи.

Длины волн спектральных линий K-серий (нм) для ряда анодных материалов.[1],[2]
Kα₁ Kα₂ Kβ₁ Kβ₂
Fe 0,193735 0,193604 0,193998 0,17566 0,17442
Cu 0,154184 0,154056 0,154439 0,139222 0,138109
Ag 0,0560834 0,0559363 0,0563775
Cr 0,2291 0,22897 0,229361
Co 0,179026 0,178897 0,179285
Mo 0,071073 0,07093 0,071359
W 0,0210599 0,0208992 0,0213813
Zr 0,078593 0,079015 0,070173 0,068993
Ni 0,165791 0,166175 0,15001 0,14886

Взаимодействие с веществом

Длина волны рентгеновских лучей сравнима с размерами атомов, поэтому не существует материала, из которого можно было бы изготовить линзу для рентгеновских лучей. Кроме того, при перпендикулярном падении на поверхность рентгеновские лучи почти не отражаются. Несмотря на это, в рентгеновской оптике были найдены способы построения оптических элементов для рентгеновских лучей.

Рентгеновские лучи могут проникать сквозь вещество, причём различные вещества по-разному их поглощают. Поглощение рентгеновских лучей является важнейшим их свойством в рентгеновской съёмке. Интенсивность рентгеновских лучей экспоненциально убывает в зависимости от пройденного пути в поглощающем слое (I = I0e-kd, где d — толщина слоя, коэффициент k пропорционален Z³λ³, Z — атомный номер элемента, λ — длина волны).

Поглощение происходит в результате фотопоглощения (фотоэффекта) и комптоновского рассеяния:

  • Под фотопоглощением понимается процесс выбивания фотоном электрона из оболочки атома, для чего требуется, чтобы энергия фотона была больше некоторого минимального значения. Если рассматривать вероятность акта поглощения в зависимости от энергии фотона, то при достижении определённой энергии она (вероятность) резко возрастает до своего максимального значения. Для более высоких значений энергии вероятность непрерывно уменьшается. По причине такой зависимости говорят, что существует граница поглощения. Место выбитого при акте поглощения электрона занимает другой электрон, при этом испускается излучение с меньшей энергией фотона, происходит т. н. процесс флюоресценции.
  • Рентгеновский фотон может взаимодействовать не только со связанными электронами, но и со свободными, а также слабосвязанными электронами. Происходит рассеяние фотонов на электронах — т. н. комптоновское рассеяние. В зависимости от угла рассеяния, длина волны фотона увеличивается на определённую величину и, соответственно, энергия уменьшается. Комптоновское рассеяние, по сравнению с фотопоглощением, становится преобладающим при более высоких энергиях фотона.


В дополнение к названным процессам существует ещё одна принципиальная возможность поглощения — за счёт возникновения электрон-позитронных пар. Однако для этого необходимы энергии более 1,022 МэВ, которые лежат вне вышеобозначенной границы рентгеновского излучения (<250 кэВ)

Биологическое воздействие

Рентгеновское излучение является ионизирующим. Оно воздействует на ткани живых организмов и может быть причиной лучевой болезни, лучевых ожогов и злокачественных опухолей. По причине этого при работе с рентгеновским излучением необходимо соблюдать меры защиты. Считается, что поражение прямо пропорционально поглощённой дозе излучения. Рентгеновское излучение является мутагенным фактором.

Регистрация

  • Эффект люминесценции. Рентгеновские лучи способны вызывать у некоторых веществ свечение (флюоресценцию). Этот эффект используется в медицинской диагностике при рентгеноскопии (наблюдение изображения на флюоресцирующем экране) и рентгеновской съёмке (рентгенографии). Медицинские фотоплёнки, как правило, применяются в комбинации с усиливающими экранами, в состав которых входят рентгенолюминофоры, которые светятся под действием рентгеновского излучения и засвечивает светочувствительную фотоэмульсию. Метод получения изображения в натуральную величину называется рентгенографией. При флюорографии изображение получается в уменьшенном масштабе. Люминесцирующее вещество (сцинтиллятор) можно оптически соединить с электронным детектором светового излучения (фотоэлектронный умножитель, фотодиод и т. п.), полученный прибор называется сцинтилляционным детектором. Он позволяет регистрировать отдельные фотоны и измерять их энергию, поскольку энергия сцинтилляционной вспышки пропорциональна энергии поглощённого фотона.
  • Фотографический эффект. Рентгеновские лучи, также как и обычный свет, способны напрямую засвечивать фотографическую эмульсию. Однако без флюоресцирующего слоя для этого требуется в 30—100 раз большая экспозиция (т.е. доза). Преимуществом этого метода (известного под названием безэкранная рентгенография) является бо́льшая резкость изображения.
  • В полупроводниковых детекторах рентгеновские лучи производят пары электрон-дырка в p-n переходе диода, включённого в запирающем направлении. При этом протекает небольшой ток, амплитуда которого пропорциональна энергии и интенсивности падающего рентгеновского излучения. В импульсном режиме возможна регистрация отдельных рентгеновских фотонов и измерение их энергии.
  • Отдельные фотоны рентгеновского излучения могут быть также зарегистрированы при помощи газонаполненных детекторов ионизирующего излучения (счётчик Гейгера, пропорциональная камера и др.).

Применение

При помощи рентгеновских лучей можно «просветить» человеческое тело, в результате чего можно получить изображение костей, а в современных приборах и внутренних органов (см. также рентген). При этом используется тот факт, что у содержащегося преимущественно в костях элемента кальция (Z=20) атомный номер гораздо больше, чем атомные номера элементов, из которых состоят мягкие ткани, а именно водорода (Z=1), углерода (Z=6), азота (Z=7), кислорода (Z=8). Кроме обычных приборов, которые дают двумерную проекцию исследуемого объекта, существуют компьютерные томографы, которые позволяют получать объёмное изображение внутренних органов.

Выявление дефектов в изделиях (рельсах, сварочных швах и т. д.)) с помощью рентгеновского излучения называется рентгеновской дефектоскопией.

В материаловедении, кристаллографии, химии и биохимии рентгеновские лучи используются для выяснения структуры веществ на атомном уровне при помощи дифракционного рассеяния рентгеновского излучения (рентгеноструктурный анализ). Известным примером является определение структуры ДНК.

Кроме того, при помощи рентгеновских лучей может быть определён химический состав вещества. В электронно-лучевом микрозонде (либо же в электронном микроскопе) анализируемое вещество облучается электронами, при этом атомы ионизируются и излучают характеристическое рентгеновское излучение. Вместо электронов может использоваться рентгеновское излучение. Этот аналитический метод называется рентгенофлуоресцентным анализом.

В аэропортах активно применяются рентгенотелевизионные интроскопы, позволяющие просматривать содержимое ручной клади и багажа в целях визуального обнаружения на экране монитора предметов, представляющих опасность.

Естественное рентгеновское излучение

На Земле электромагнитное излучение в рентгеновском диапазоне образуется в результате ионизации атомов излучением, которое возникает при радиоактивном распаде, а также космическим излучением. Радиоактивный распад также приводит к непосредственному излучению рентгеновских квантов, если вызывает перестройку электронной оболочки распадающегося атома (например, при электронном захвате). Рентгеновское излучение, которое возникает на других небесных телах, не достигает поверхности Земли, т. к. полностью поглощается атмосферой. Оно исследуется спутниковыми рентгеновскими телескопами, такими как Чандра и XMM-Ньютон.

История открытия

Рентгеновская фотография (рентгенограмма) руки своей жены, сделанная В. К. Рентгеном

Открытие рентгеновского излучения приписывается Вильгельму Конраду Рёнтгену. Он был первым, кто опубликовал статью о рентгеновских лучах, которые он назвал икс-лучами (x-ray). Статья Рентгена под названием «О новом типе лучей» была опубликована 28-го декабря 1895 года в журнале Вюрцбургского физико-медицинского общества. Считается, однако, доказанным, что рентгеновские лучи были уже получены до этого. Катодолучевая трубка, которую Рентген использовал в своих экспериментах, была разработана Й. Хитторфом и В. Круксом. При работе этой трубки возникают рентгеновские лучи. Это было показано в экспериментах Крукса и с 1892 года в экспериментах Генриха Герца и его ученика Филиппа Ленарда через почернение фотопластинок. Однако никто из них не осознал значения сделанного ими открытия и не опубликовал своих результатов.

По этой причине Рентген не знал о сделанных до него открытиях и открыл лучи, названные впоследствие его именем, независимо — при наблюдении флюоресценции, возникающей при работе катодолучевой трубки. Рентген занимался Х-лучами немногим более года (с 8 ноября 1895 года по март 1897 года) и опубликовал о них три статьи, в которых было исчерпывающее описание новых лучей, впоследствии сотни работ его последователей, опубликованных затем на протяжении 12 лет, не могли ни прибавить, ни изменить ничего существенного. Рентген, потерявший интерес к Х-лучам, говорил своим коллегам: «Я уже всё написал, не тратьте зря время». Свой вклад в известность Рентгена внесла также знаменитая фотография руки его жены, которую он опубликовал в своей статье (см. изображение справа). За открытие рентгеновских лучей Рентгену в 1901 году была присуждена первая Нобелевская премия по физике, причём нобелевский комитет подчёркивал практическую важность его открытия. В 1896 году впервые было употреблено название «рентгеновские лучи». В некоторых странах осталось старое название — X-лучи. В России лучи стали называть «рентгеновскими» по инициативе ученика В. К. Рентгена — Абрама Фёдоровича Иоффе.

Сноски

  1. CRC Handbook of Chemistry and Physics 75th ed. David R. Lide P.10-227. CRC Press ISBN 0-8493-0475-X
  2. Crystallographica, v1.60a. Oxford Cryosystems 1995—1999.

Ссылки

Wikimedia Foundation. 2010.

лучи — это… Что такое Х-лучи?

Рентге́новское излуче́ние — электромагнитные волны, энергия фотонов которых лежит на энергетической шкале между ультрафиолетовым излучением и гамма-излучением, что соответствует длинам волн от 10−4 до 10² Å (от 10−14 до 10−8м).

Положение на шкале электромагнитных волн

Энергетические диапазоны рентгеновского излучения и гамма-излучения перекрываются в широкой области энергий. Оба типа излучения являются электромагнитным излучением и при одинаковой энергии фотонов — эквивалентны. Терминологическое различие лежит в способе возникновения — рентгеновские лучи испускаются при участии электронов (либо в атомах, либо свободных) в то время как гамма-излучение испускается в процессах девозбуждения атомных ядер. Фотоны рентгеновского излучения имеют энергию от 100 эВ до 250 кэВ, что соответствует излучению с частотой от 3·1016 Гц до 6·1019 Гц и длиной волны 0,005 — 10 нм (общепризнанного определения нижней границы диапазона рентгеновских лучей в шкале длин волн не существует). Мягкий рентген характеризуется наименьшей энергией фотона и частотой излучения (и наибольшей длиной волны), а жёсткий рентген обладает наибольшей энергией фотона и частотой излучения (и наименьшей длиной волны). Жёсткий рентген используется преимущественно в промышленных целях.

Получение

Схематическое изображение рентгеновской трубки. X — рентгеновские лучи, K — катод, А — анод (иногда называемый антикатодом), С — теплоотвод, Uh — напряжение накала катода, Ua — ускоряющее напряжение, Win — впуск водяного охлаждения, Wout — выпуск водяного охлаждения (см. рентгеновская трубка).

Рентгеновские лучи возникают при сильном ускорении заряженных частиц (тормозное излучение), либо при высокоэнергетичных переходах в электронных оболочках атомов или молекул. Оба эффекта используются в рентгеновских трубках, в которых электроны, испущенные катодом, ускоряются под действием разности электрических потенциалов между анодом и катодом (при этом рентгеновские лучи не испускаются, т. к. ускорение слишком мало) и ударяются об анод, где они резко тормозятся (при этом испускаются рентгеновские лучи: т. е. тормозное излучение) и в то же время выбивают электроны из внутренних электронных оболочек атомов анода. Пустые места в оболочках занимаются другими электронами атома. При этом испускается рентгеновское излучение с характерным для материала анода спектром энергий (характеристическое излучение, частоты определяются законом Мозли: где Z — атомный номер элемента анода, A и B — константы для определённого значения главного квантового числа n электронной оболочки). В настоящее время аноды изготовляются главным образом из керамики, причём та их часть, куда ударяют электроны, — из молибдена.

В процессе ускорения-торможения лишь около 1% кинетической энергии электрона идёт на рентгеновское излучение, 99 % энергии превращается в тепло.

Рентгеновское излучение можно получать также и на ускорителях заряженных частиц. Т. н. синхротронное излучение возникает при отклонении пучка частиц в магнитном поле, в результате чего они испытывают ускорение в направлении, перпендикулярном их движению. Синхротронное излучение имеет сплошной спектр с верхней границей. При соответствующим образом выбранных параметрах (величина магнитного поля и энергия частиц) в спектре синхротронного излучения можно получить и рентгеновские лучи.

Длины волн спектральных линий K-серий (нм) для ряда анодных материалов.[1],[2]
Kα₁ Kα₂ Kβ₁ Kβ₂
Fe 0,193735 0,193604 0,193998 0,17566 0,17442
Cu 0,154184 0,154056 0,154439 0,139222 0,138109
Ag 0,0560834 0,0559363 0,0563775
Cr 0,2291 0,22897 0,229361
Co 0,179026 0,178897 0,179285
Mo 0,071073 0,07093 0,071359
W 0,0210599 0,0208992 0,0213813
Zr 0,078593 0,079015 0,070173 0,068993
Ni 0,165791 0,166175 0,15001 0,14886

Взаимодействие с веществом

Длина волны рентгеновских лучей сравнима с размерами атомов, поэтому не существует материала, из которого можно было бы изготовить линзу для рентгеновских лучей. Кроме того, при перпендикулярном падении на поверхность рентгеновские лучи почти не отражаются. Несмотря на это, в рентгеновской оптике были найдены способы построения оптических элементов для рентгеновских лучей.

Рентгеновские лучи могут проникать сквозь вещество, причём различные вещества по-разному их поглощают. Поглощение рентгеновских лучей является важнейшим их свойством в рентгеновской съёмке. Интенсивность рентгеновских лучей экспоненциально убывает в зависимости от пройденного пути в поглощающем слое (I = I0e-kd, где d — толщина слоя, коэффициент k пропорционален Z³λ³, Z — атомный номер элемента, λ — длина волны).

Поглощение происходит в результате фотопоглощения (фотоэффекта) и комптоновского рассеяния:

  • Под фотопоглощением понимается процесс выбивания фотоном электрона из оболочки атома, для чего требуется, чтобы энергия фотона была больше некоторого минимального значения. Если рассматривать вероятность акта поглощения в зависимости от энергии фотона, то при достижении определённой энергии она (вероятность) резко возрастает до своего максимального значения. Для более высоких значений энергии вероятность непрерывно уменьшается. По причине такой зависимости говорят, что существует граница поглощения. Место выбитого при акте поглощения электрона занимает другой электрон, при этом испускается излучение с меньшей энергией фотона, происходит т. н. процесс флюоресценции.
  • Рентгеновский фотон может взаимодействовать не только со связанными электронами, но и со свободными, а также слабосвязанными электронами. Происходит рассеяние фотонов на электронах — т. н. комптоновское рассеяние. В зависимости от угла рассеяния, длина волны фотона увеличивается на определённую величину и, соответственно, энергия уменьшается. Комптоновское рассеяние, по сравнению с фотопоглощением, становится преобладающим при более высоких энергиях фотона.


В дополнение к названным процессам существует ещё одна принципиальная возможность поглощения — за счёт возникновения электрон-позитронных пар. Однако для этого необходимы энергии более 1,022 МэВ, которые лежат вне вышеобозначенной границы рентгеновского излучения (<250 кэВ)

Биологическое воздействие

Рентгеновское излучение является ионизирующим. Оно воздействует на ткани живых организмов и может быть причиной лучевой болезни, лучевых ожогов и злокачественных опухолей. По причине этого при работе с рентгеновским излучением необходимо соблюдать меры защиты. Считается, что поражение прямо пропорционально поглощённой дозе излучения. Рентгеновское излучение является мутагенным фактором.

Регистрация

  • Эффект люминесценции. Рентгеновские лучи способны вызывать у некоторых веществ свечение (флюоресценцию). Этот эффект используется в медицинской диагностике при рентгеноскопии (наблюдение изображения на флюоресцирующем экране) и рентгеновской съёмке (рентгенографии). Медицинские фотоплёнки, как правило, применяются в комбинации с усиливающими экранами, в состав которых входят рентгенолюминофоры, которые светятся под действием рентгеновского излучения и засвечивает светочувствительную фотоэмульсию. Метод получения изображения в натуральную величину называется рентгенографией. При флюорографии изображение получается в уменьшенном масштабе. Люминесцирующее вещество (сцинтиллятор) можно оптически соединить с электронным детектором светового излучения (фотоэлектронный умножитель, фотодиод и т. п.), полученный прибор называется сцинтилляционным детектором. Он позволяет регистрировать отдельные фотоны и измерять их энергию, поскольку энергия сцинтилляционной вспышки пропорциональна энергии поглощённого фотона.
  • Фотографический эффект. Рентгеновские лучи, также как и обычный свет, способны напрямую засвечивать фотографическую эмульсию. Однако без флюоресцирующего слоя для этого требуется в 30—100 раз большая экспозиция (т.е. доза). Преимуществом этого метода (известного под названием безэкранная рентгенография) является бо́льшая резкость изображения.
  • В полупроводниковых детекторах рентгеновские лучи производят пары электрон-дырка в p-n переходе диода, включённого в запирающем направлении. При этом протекает небольшой ток, амплитуда которого пропорциональна энергии и интенсивности падающего рентгеновского излучения. В импульсном режиме возможна регистрация отдельных рентгеновских фотонов и измерение их энергии.
  • Отдельные фотоны рентгеновского излучения могут быть также зарегистрированы при помощи газонаполненных детекторов ионизирующего излучения (счётчик Гейгера, пропорциональная камера и др.).

Применение

При помощи рентгеновских лучей можно «просветить» человеческое тело, в результате чего можно получить изображение костей, а в современных приборах и внутренних органов (см. также рентген). При этом используется тот факт, что у содержащегося преимущественно в костях элемента кальция (Z=20) атомный номер гораздо больше, чем атомные номера элементов, из которых состоят мягкие ткани, а именно водорода (Z=1), углерода (Z=6), азота (Z=7), кислорода (Z=8). Кроме обычных приборов, которые дают двумерную проекцию исследуемого объекта, существуют компьютерные томографы, которые позволяют получать объёмное изображение внутренних органов.

Выявление дефектов в изделиях (рельсах, сварочных швах и т. д.)) с помощью рентгеновского излучения называется рентгеновской дефектоскопией.

В материаловедении, кристаллографии, химии и биохимии рентгеновские лучи используются для выяснения структуры веществ на атомном уровне при помощи дифракционного рассеяния рентгеновского излучения (рентгеноструктурный анализ). Известным примером является определение структуры ДНК.

Кроме того, при помощи рентгеновских лучей может быть определён химический состав вещества. В электронно-лучевом микрозонде (либо же в электронном микроскопе) анализируемое вещество облучается электронами, при этом атомы ионизируются и излучают характеристическое рентгеновское излучение. Вместо электронов может использоваться рентгеновское излучение. Этот аналитический метод называется рентгенофлуоресцентным анализом.

В аэропортах активно применяются рентгенотелевизионные интроскопы, позволяющие просматривать содержимое ручной клади и багажа в целях визуального обнаружения на экране монитора предметов, представляющих опасность.

Естественное рентгеновское излучение

На Земле электромагнитное излучение в рентгеновском диапазоне образуется в результате ионизации атомов излучением, которое возникает при радиоактивном распаде, а также космическим излучением. Радиоактивный распад также приводит к непосредственному излучению рентгеновских квантов, если вызывает перестройку электронной оболочки распадающегося атома (например, при электронном захвате). Рентгеновское излучение, которое возникает на других небесных телах, не достигает поверхности Земли, т. к. полностью поглощается атмосферой. Оно исследуется спутниковыми рентгеновскими телескопами, такими как Чандра и XMM-Ньютон.

История открытия

Рентгеновская фотография (рентгенограмма) руки своей жены, сделанная В. К. Рентгеном

Открытие рентгеновского излучения приписывается Вильгельму Конраду Рёнтгену. Он был первым, кто опубликовал статью о рентгеновских лучах, которые он назвал икс-лучами (x-ray). Статья Рентгена под названием «О новом типе лучей» была опубликована 28-го декабря 1895 года в журнале Вюрцбургского физико-медицинского общества. Считается, однако, доказанным, что рентгеновские лучи были уже получены до этого. Катодолучевая трубка, которую Рентген использовал в своих экспериментах, была разработана Й. Хитторфом и В. Круксом. При работе этой трубки возникают рентгеновские лучи. Это было показано в экспериментах Крукса и с 1892 года в экспериментах Генриха Герца и его ученика Филиппа Ленарда через почернение фотопластинок. Однако никто из них не осознал значения сделанного ими открытия и не опубликовал своих результатов.

По этой причине Рентген не знал о сделанных до него открытиях и открыл лучи, названные впоследствие его именем, независимо — при наблюдении флюоресценции, возникающей при работе катодолучевой трубки. Рентген занимался Х-лучами немногим более года (с 8 ноября 1895 года по март 1897 года) и опубликовал о них три статьи, в которых было исчерпывающее описание новых лучей, впоследствии сотни работ его последователей, опубликованных затем на протяжении 12 лет, не могли ни прибавить, ни изменить ничего существенного. Рентген, потерявший интерес к Х-лучам, говорил своим коллегам: «Я уже всё написал, не тратьте зря время». Свой вклад в известность Рентгена внесла также знаменитая фотография руки его жены, которую он опубликовал в своей статье (см. изображение справа). За открытие рентгеновских лучей Рентгену в 1901 году была присуждена первая Нобелевская премия по физике, причём нобелевский комитет подчёркивал практическую важность его открытия. В 1896 году впервые было употреблено название «рентгеновские лучи». В некоторых странах осталось старое название — X-лучи. В России лучи стали называть «рентгеновскими» по инициативе ученика В. К. Рентгена — Абрама Фёдоровича Иоффе.

Сноски

  1. CRC Handbook of Chemistry and Physics 75th ed. David R. Lide P.10-227. CRC Press ISBN 0-8493-0475-X
  2. Crystallographica, v1.60a. Oxford Cryosystems 1995—1999.

Ссылки

Wikimedia Foundation. 2010.

Рентгеновские лучи: от искусствоведения до космоса

Когда мы говорим о рентгене, мы чаще всего представляем себе процедуру в медицинском кабинете. Однако с помощью рентгеновских лучей можно узнать о подлинности картины, строении молекулы и даже дальних космических объектах. Об этом школьникам «Сириуса» рассказал Никита Марченков, заместитель директора по молодежной научной политике ФНИЦ «Кристаллография и фотоника» РАН.

В 1901 году Вильгельм Конрад Рентген получил первую Нобелевскую премию по физике за открытие лучей, которые поначалу показались такими загадочными, что их назвали «X-rays» («лучи-икс»). Но ученые не останавливались на достигнутом. Прошло немного времени, и это открытие приобрело важнейшее значение для медицины.

Так удивительно получилось, что в природе кристаллические материалы, которые окружают всех нас, содержат много атомов. Расстояние между ними соразмерно с длиной волны рентгеновского излучения. Кристаллическая решетка является естественной дифракционной решеткой для рентгеновского излучения. Сегодня это свойство используется повсеместно: например, в промышленности кристаллические материалы изготавливаются для микросхем. Понятно, что от качества кристаллов зависят и их свойства. А рентгеновская кристаллография помогает нам узнать о структуре белков и других веществ. Она же когда-то позволила построить модель молекулы ДНК Уотсону и Крику.

Существуют так называемые синхротронные источники рентгеновского излучения – ускорители электронов. Сейчас все страны, которые хотят чувствовать себя уверенно на технологическом рынке, должны создавать у себя источники синхротронного излучения. Никто не говорит, что экономику страны не построить без коллайдера. Он нужен для удовлетворения любопытства ученых, которые хотят узнать, как устроена Вселенная, изучить бозон Хиггса. А вот синхротронные источники нужны для «земных» вещей – например, в самолетостроении. Недавно авиакомпания Emirates купила целую синхротронную станцию, чтобы изучать материалы, из которых она изготавливает двигатели и крылья самолетов.

Что же ждет рентгеновское излучение в будущем? Сегодня оно помогает в развитии природоподобных технологий. Человек всегда создавал приборы и технологии на примере того, что он видел в живой природе и, может быть, даже немного копировал. Он изучал работу человеческого глаза и создавал линзы и оптические приборы; видел свет солнца — и создал солнечную энергетику.

Но поскольку раньше человек наблюдал лишь видимое простым глазом, понятно, что копирование было достаточно поверхностным. Человеческий глаз потребляет всего 20-30 ватт энергии, суперкомпьютер – 1 мегаватт, при этом вычислительная мощность мозга и компьютера соразмерна. Сегодня с помощью рентгеновского излучения мы можем исследовать процессы на атомарном уровне, смотреть, как работают отдельные молекулы. Новые технологии тоже позволяют нам копировать, но теперь мы гораздо глубже и полнее понимаем оригинал.

Также рентгеновское излучение может использоваться в социогуманитарных науках. Казалось бы, что общего между физикой и, например, археологией? Но сегодня границы между науками настолько размываются, что для получения прорывных результатов недостаточно разбираться только в одной области. Нужно иметь комплексный подход и смотреть на объект исследования с разных сторон.

Десятилетия назад мало кто мог бы представить, что знание о работе медицинских приборов может пригодиться египтологу. Никита Марченков рассказал, как к ним в институт привезли мумий, поместили их томограф и изучили их скелет. Дальше эту информацию передали врачам, они проанализировали данные и написали полную историю болезни мумий, а также определили пол и возраст, а затем передали историкам. Историки никогда бы не могли представить, что и не прикасаясь к мумии можно получить настолько богатую информацию о том человеке, который ею стал. Сегодня такие взаимодействия между науками – обычное дело.

Вот еще несколько примеров. Когда просвечивали статую Будды, то оказалось, что в ней замурован индийский монах. Другой случай – история про свитки, найденные в Помпеях, которые были настолько хрупкими, что их нельзя было даже разворачивать. Но с помощью рентгеновского излучения удалось прочитать написанный внутри текст. Рентгеновские лучи – уникальный пример того, как физический метод может применяться в гуманитарных науках.

Также этот метод важен для изучения объектов культурного наследия. Это настоящая находка для искусствоведов. Во-первых, рентгеновское излучение помогает понять химический состав красок, которыми написана картина. А это прямой выход на то, чтобы посмотреть, подлинник перед вами или подделка. Во-вторых, можно увидеть, в какой последовательности накладывались слои краски. Например, мы можем узнать, что у человека рука была нарисована сначала так, а потом художник решил изменить позу героя.

Поэтому рентгеновские лучи находят множество применений в самых разных областях – от самых земных до космических.

Смертоносные лучи, спасающие жизни. В «день рождения» рентгена «Чердак» рассказывает, как Х-лучи изменили наш мир

Таинственный свет

8 ноября 1895 года в лаборатории Вильгельма Конрада Рентгена, руководителя физического института Университета Вюрцбурга, вечером оставался лишь сам Рентген. В лаборатории было темно. Исследователь включил катодную трубку, обклеенную со всех сторон темной бумагой, и внезапно на столе засветился экран, покрытый кристаллами цианоплатината бария. Рентген выключили трубку — свечение исчезло. Снова включил — опять появилось. Физик сделал вывод: из трубки исходит невидимое излучение, которое, тем не менее, вызывает свечение кристаллов и, как позже выяснилось, засвечивает фотопластинку. Рентген назвал излучение Х-лучами, а позже их переименовали в рентгеновские. Исследования показали, что лучи — это электромагнитное излучение с очень большой энергией, больше, чем, например, у ультрафиолета.

Вильгельм Конрад Рентген был весьма представительным мужчиной


Через шесть лет после открытия рентгеновское излучение принесло своему первооткрывателю первую в истории Нобелевскую премию по физике. А еще рентген радикально изменил современную науку и технику. «Чердак» рассказывает, где сегодня используют Х-лучи.

Узнать, что внутри человека

Для обычного человека слово «рентген» означает не фамилию или не единицу измерения, а метод исследования. Чаще всего при такой неприятной вещи, как перелом. И действительно, с момента, когда был опубликован первый рентгеновский снимок руки с кольцом (кстати, не жены Рентгена, как многие думают, а его ассистента), именно рентгеновские лучи остаются самым надежным способом узнать, что внутри у человека, не вскрывая его оболочку. За столетие с небольшим медицинский рентген эволюционировал, стал цифровым, дозы облучения, которые получает тело человека, уменьшились, а качество изображения многократно улучшилось. Но самое важное — рентген эволюционировал в гораздо более мощный способ диагностики, который годится не только для диагностики сломанных костей.

Тот самый снимок с кольцом


Рентгеновское излучение поглощают не только кости, но и другие ткани, причем каждая по-своему. Именно на этом эффекте основан метод компьютерной томографии, за который в 1979 году Аллан Кормак и Годфри Хаунсфилд получили Нобелевскую премию по физиологии и медицине. Да-да, это далеко не все знают, но в основе «модной» КТ — старый добрый рентген. Внутри кольца, в котором лежит пациент, вращаются источник рентгеновских лучей и приемник. Полученные данные о том, как ткани тела поглощают рентгеновские лучи, реконструируются компьютером в 3D-картинку.

Метод КТ особенно важен при инсультах, хоть он и менее точен, чем магнитно-резонансная томография головного мозга, зато КТ-диагностика гораздо быстрее. А когда нужно выяснить, какой именно инсульт произошел — геморрагический (с кровоизлиянием, и тогда пациента нужно срочно класть на стол к нейрохирургу) или ишемический (когда тромб закупоривает сосуды, и нужны разжижающие кровь препараты), каждая минута на счету.

Найти дефекты

Рентгеноскопию можно делать не только сломанной руке. Рентген отлично подходит для просвечивания, например, металлов. На глаз невозможно определить, прочно ли сварили конструкции моста, герметичен ли шов у газопровода и плотно ли прилегают друг к другу рельсы. Чтобы выяснить это, существуют разнообразные методы дефектоскопии. Среди них почетное место занимает рентгеновская дефектоскопия, она же «радиографический контроль сварных швов». Благодаря рентгену можно увидеть дефекты, микротрещины, включение пузырьков воздуха, шлака.

Убить опухоль

Даже ультрафиолетовое излучение в больших дозах разрушает живую материю, что уж говорить о куда более высокоэнергетических рентгене или гамма-лучах. Именно из-за убийственной силы рентгена сотрудники радиологических отделений, которые делают нам рентген и компьютерную томографию, во время исследований надевают свинцовые фартуки, которые не пропускают рентгеновские лучи. Сам пациент получает небольшую дозу, с которой прекрасно справляются механизмы «починки» ДНК (за открытие которых дали Нобелевскую премию 2015 года по химии — «Чердак» подробно писал про это), а вот сотрудники лаборатории без фартуков ежедневно «схватывали» бы очень немало.

Но медицина придумала, как использовать эти страшные свойства рентгена во благо: жесткое излучение отлично подходит для того, чтобы убивать раковые опухоли. Конечно, у такой терапии неизбежны побочные эффекты, но, когда на одной чаше весов — вред, с которым организм может справиться, а на другой — неизбежная гибель от рака, выбор очевиден.

До того как ученые осознали опасность рентгеновского излучения, с его помощью лечили едва ли не все болезни, например туберкулез


Вопреки распространенному мнению самая распространенная разновидность лучевой терапии использует жесткое рентгеновское излучение, а не гамма-лучи еще более высокой энергии. Чтобы «добыть» Х-лучи, радиоактивные вещества не используются: вместо этого электроны сначала разгоняют до высоких скоростей в магнитном поле, а затем тормозят их. «Лишняя» энергия выделяется в виде рентгеновских лучей, которые и убивают опухоль.

Узнать структуру вещества

Еще один плюс рентгеновского излучения — у него очень маленькая длина волны. А значит, его можно использовать для разглядывания очень маленьких предметов. У «обычного» излучения в оптическом диапазоне длина волны намного больше, поэтому с его помощью невозможно увидеть отдельные молекулы, размер которых которые меньше этого значения. Электромагнитные волны оптического диапазона попросту не будут «замечать» эти молекулы, огибая его.

А вот рентген отлично подходит для изучения структуры очень маленьких объектов. Менее чем через 20 лет после открытия лучей отец и сын, Уильям Генри и Уильям Лоуренс Брэгги поняли, что, используя рентгеновское излучение, а точнее, дифракцию рентгеновских лучей на кристалле вещества, можно узнать структуру кристаллической решетки. Так появился рентгеноструктурный анализ, а «семейный подряд» получил Нобелевскую премию по физике 1915 года (Брэгг-младший так и вовсе стал самым молодым естественнонаучным лауреатом премии за все времена: награда досталась ему в 25 лет!).

Позже оказалось, что таким образом можно определять и структуру белков, главное — вырастить из них кристаллы. Этот процесс — настоящее искусство, и впервые его удалось осуществить британскому химику Дороти Кроуфут-Ходжкин, которая в 1964 году удостоилась за свои работы Нобелевской премии по химии (всего женщины получали высшую научную награду в этой категории четыре раза).

Анализируя, как рассеиваются рентгеновские лучи на кристаллах биомолекул, ученые могут детально воссоздать их структуру. Изображение: Thomas White, Center for Free-Electron Laser Science—CFEL—at DESY


Более того, рентген вместе с еще одним «нобелевским» изобретением наших соотечественников Александра Прохорова и Николая Басова — лазером — помог еще глубже проникнуть в структуру биологических молекул. Сейчас в Европе готовится к запуску международный проект рентгеновского лазера на свободных электронах (XFEL), куда уже выстроились в очередь со своими экспериментами ученые, работающие в области наук о живом. Рентгеновское лазерное излучение будет использоваться для еще более точного определения структур кристаллов биомолекул.

Узнать, как устроена Вселенная

Открытие Вильгельма Конрада Рентгена позволило нам не только узнать, как устроено вещество, но и увидеть самые загадочные объекты во Вселенной — черные дыры.

Черная дыра поглощает все вокруг, даже свет, поэтому увидеть ее непосредственно нельзя. Падая на дыру, вещество разгоняется до огромнейших скоростей. При этом оно разогревается и начинает излучать в рентгеновском диапазоне. Именно поэтому «увидеть» черную дыру можно именно при помощи рентгеновских телескопов. Один из первых рентгеновских источников на небе — Лебедь Х-1 — был открыт в 1964 году, и сегодня большинство ученых уверены, что это черная дыра массой около 15 солнечных масс.

К счастью для людей, рентгеновские лучи не проникают сквозь земную атмосферу, иначе перспективы жизни на планете были бы туманными. Но из-за этой счастливой особенности рентгеновские телескопы приходится запускать в космос. Самые заслуженные — аппарат NASA Сhandra и европейский XMM-Newton — трудятся на орбите до сих пор, а совсем скоро в космос должен отправиться и российско-германский телескоп «Спектр-рентген-гамма». Кроме черных дыр такие телескопы «видят» и другие экзотические объекты типа нейтронных звезд или квазаров (впрочем, основой квазара тоже является черная дыра в центре галактики).

 Алексей Паевский

Рентгенологические исследования — Памятка пациенту — Помощь

Применение

При помощи рентгеновских лучей можно «просветить» человеческое тело, в результате чего можно получить изображение костей, а в современных приборах и внутренних органов (см. также рентген). При этом используется тот факт, что у содержащегося преимущественно в костях элемента кальция (Z=20) атомный номер гораздо больше, чем атомные номера элементов, из которых состоят мягкие ткани, а именно водорода (Z=1), углерода (Z=6), азота (Z=7), кислорода (Z=8). Кроме обычных приборов, которые дают двумерную проекцию исследуемого объекта, существуют компьютерные томографы, которые позволяют получать объёмное изображение внутренних органов.

Выявление дефектов в изделиях (рельсах, сварочных швах и т. д.) с помощью рентгеновского излучения называется рентгеновской дефектоскопией.

В материаловедении, кристаллографии, химии и биохимии рентгеновские лучи используются для выяснения структуры веществ на атомном уровне при помощи дифракционного рассеяния рентгеновского излучения (рентгеноструктурный анализ). Известным примером является определение структуры ДНК.

Кроме того, при помощи рентгеновских лучей может быть определён химический состав вещества. В электронно-лучевом микрозонде (либо же в электронном микроскопе) анализируемое вещество облучается электронами, при этом атомы ионизируются и излучают характеристическое рентгеновское излучение. Вместо электронов может использоваться рентгеновское излучение. Этот аналитический метод называется рентгенофлуоресцентным анализом.

В аэропортах активно применяются рентгенотелевизионные интроскопы, позволяющие просматривать содержимое ручной клади и багажа в целях визуального обнаружения на экране монитора предметов, представляющих опасность.

Рентгенотерапия — раздел лучевой терапии, охватывающий теорию и практику лечебного применения рентгеновских лучей, генерируемых при напряжении на рентгеновской трубке 20—60 кв и кожно-фокусном расстоянии 3—7 см (короткодистанционная рентгенотерапия) или при напряжении 180—400 кв и кожно-фокусном расстоянии 30—150 см (дистанционная рентгенотерапия).

Рентгенотерапию проводят преимущественно при поверхностно расположенных опухолях и при некоторых других заболеваниях, в том числе заболеваниях кожи (ультрамягкие рентгеновские лучи Букки).

Естественное рентгеновское излучение

На Земле электромагнитное излучение в рентгеновском диапазоне образуется в результате ионизации атомов излучением, которое возникает при радиоактивном распаде, а также космическим излучением. Радиоактивный распад также приводит к непосредственному излучению рентгеновских квантов, если вызывает перестройку электронной оболочки распадающегося атома (например, при электронном захвате). Рентгеновское излучение, которое возникает на других небесных телах, не достигает поверхности Земли, т. к. полностью поглощается атмосферой. Оно исследуется спутниковыми рентгеновскими телескопами, такими как Чандра и XMM-Ньютон.

История открытия

Рентгеновское излучение было открыто Вильгельмом Конрадом Рёнтгеном. Он был первым, кто опубликовал статью о рентгеновских лучах, которые он назвал икс-лучами (x-ray). Статья Рентгена под названием «О новом типе лучей» была опубликована 28-го декабря 1895 года в журнале Вюрцбургского физико-медицинского общества. В некоторых кругах, однако, утверждается, что рентгеновские лучи были уже получены до этого И. П. Пулюем. Катодолучевая трубка, которую Рентген использовал в своих экспериментах, была разработана Й. Хитторфом и В. Круксом. При работе этой трубки возникают рентгеновские лучи. Это было показано в экспериментах Крукса и с 1892 года в экспериментах Генриха Герца и его ученика Филиппа Ленарда через почернение фотопластинок. Однако никто из них не осознал значения сделанного ими открытия и не опубликовал своих результатов.

Рентген

Ниже приведены примеры обследований и процедур, в которых используется рентгеновское излучение для диагностики или лечения заболеваний:

Диагностика

Рентгенография: Обнаруживает переломы костей, определенные опухоли и другие аномальные образования, пневмонию, некоторые виды травм, кальцификаты, инородные предметы, проблемы с зубами и т. Д.

Маммография: Рентгеновский снимок груди, который используется для обнаружения и диагностики рака. Опухоли, как правило, выглядят как массы правильной или неправильной формы, которые несколько ярче, чем фон на рентгенограмме (т.е., белее на черном фоне или чернее на белом фоне). Маммограммы также могут обнаружить крошечные частицы кальция, называемые микрокальцификациями, которые проявляются в виде очень ярких пятнышек на маммограмме. Обычно микрокальцификаты доброкачественные, но иногда могут указывать на наличие определенного типа рака.

КТ (компьютерная томография): Сочетает традиционную рентгеновскую технологию с компьютерной обработкой для создания серии изображений поперечного сечения тела, которые впоследствии могут быть объединены в трехмерное рентгеновское изображение.КТ-изображения более подробны, чем обычные рентгенограммы, и дают врачам возможность рассматривать структуры внутри тела под разными углами.

Рентгеноскопия: Использует рентгеновские лучи и флуоресцентный экран для получения изображений движения внутри тела в реальном времени или для просмотра диагностических процессов, таких как отслеживание пути введенного или проглоченного контрастного вещества. Например, рентгеноскопия используется для наблюдения за движением бьющегося сердца и, с помощью рентгенографических контрастных веществ, для наблюдения за кровотоком в сердечной мышце, а также через кровеносные сосуды и органы.Эта технология также используется с рентгенографическим контрастным веществом для направления катетера с внутренней резьбой во время сердечной ангиопластики, которая является минимально инвазивной процедурой для открытия закупоренных артерий, по которым кровь поступает в сердце.

Лечебная

Лучевая терапия в лечении рака: Рентгеновские лучи и другие виды высокоэнергетического излучения могут использоваться для уничтожения раковых опухолей и клеток путем повреждения их ДНК. Доза облучения, используемая для лечения рака, намного выше, чем доза облучения, используемая для диагностической визуализации.Терапевтическое излучение может исходить от аппарата вне тела или от радиоактивного материала, который помещается в тело, внутри или рядом с опухолевыми клетками или вводится в кровоток.
Щелкните здесь, чтобы получить дополнительную информацию о лучевой терапии рака.

лучей | Johns Hopkins Medicine

Что такое рентгеновские лучи?

Рентгеновские лучи используют невидимые лучи электромагнитной энергии для получения изображений внутренних тканей, костей и органов на пленке или цифровом носителе. Стандартные рентгеновские снимки выполняются по многим причинам, включая диагностику опухолей или травм костей.

Рентгеновские лучи производятся с использованием внешнего излучения для получения изображений тела, его органов и других внутренних структур в диагностических целях. Рентгеновские лучи проходят через структуры тела на специально обработанные пластины (похожие на фотопленку) или цифровые носители, и получается изображение «негативного» типа (чем тверже структура, тем белее она выглядит на пленке).

Когда тело подвергается рентгеновскому облучению, разные части тела пропускают различное количество рентгеновских лучей.Мягкие ткани тела (например, кровь, кожа, жир и мышцы) пропускают большую часть рентгеновских лучей и выглядят темно-серыми на пленке или цифровом носителе. Кость или опухоль, которые более плотны, чем мягкие ткани, пропускают мало рентгеновских лучей и выглядят белыми на рентгеновских снимках. Когда произошел перелом кости, рентгеновский луч проходит через поврежденную область и появляется в виде темной линии на белой кости.

Рентгеновская технология используется в других типах диагностических процедур, таких как артериограмма, компьютерная томография (КТ) и рентгеноскопия.

Радиация во время беременности может привести к врожденным дефектам. Всегда сообщайте своему рентгенологу или врачу, если подозреваете, что беременны.

Как выполняется рентген?

Рентген можно проводить в амбулаторных условиях или в рамках стационарного лечения.

Хотя в каждом учреждении могут быть определенные протоколы, обычно процедура рентгена следует этому процессу:

  1. Пациенту будет предложено снять любую одежду или украшения, которые могут помешать обнажению исследуемой области тела. осмотрел.Пациенту дадут халат, чтобы надеть его, если одежду необходимо снять.

  2. Пациента помещают на рентгеновский стол, который осторожно размещает часть тела, подлежащую рентгеновскому облучению, — между рентгеновским аппаратом и кассетой, содержащей рентгеновскую пленку или специализированную пластину для изображения. . Некоторые обследования могут проводиться с пациентом в сидячем или стоячем положении.

  3. Части тела, изображения которых не отображаются, можно накрыть свинцовым фартуком (экраном), чтобы избежать воздействия рентгеновских лучей.

  4. Рентгеновский луч будет направлен на область изображения.

  5. Пациент должен быть неподвижен, иначе изображение будет размытым.

  6. Технолог зайдет за защитное окно, и будет сделан снимок.

  7. В зависимости от исследуемой части тела можно делать различные рентгеновские снимки под разными углами, например, вид спереди и сбоку во время рентгенографии грудной клетки.

Рентген объяснил | Мэйфилд мозг и позвоночник

Обзор

Рентген — это диагностический тест, который использует радиационные волны, называемые рентгеновскими лучами, для получения снимков тканей вашего тела.

Как работает рентген?

Когда рентгеновский луч проходит через ваше тело, ткани и кости тела поглощают и / или блокируют луч в разной степени в зависимости от его плотности. Это создает тень, которая улавливается пленкой или датчиком, расположенным на противоположной стороне луча — так же, как когда вы держите фонарик в руке и отбрасываете тень на стену.

Что показывает рентген?

На рентгеновском снимке кости кажутся белыми, воздух — черным, а мышцы / мягкие ткани — серыми.Рентген используется для обнаружения переломов костей, артрита, сколиоза, опухолей, остеопороза, жидкости в легких и инфекции.

Рисунок 1. Рентген позвоночника.

Кто проводит тест?

Технолог-радиолог выполнит тест в больнице или амбулаторном центре визуализации.

Как мне подготовиться к тесту?

Вы должны носить свободную одежду и убирать все предметы, которые могут мешать рентгеновскому излучению, например, шпильки или украшения.Возможно, вам придется переодеться в больничную одежду, в зависимости от того, какая область вашего тела снимается.

Что происходит во время теста?

Вы окажетесь перед рентгеновским аппаратом. Когда будет сделан снимок, технолог выйдет из комнаты или встанет за шлагбаум. Вам будет предложено задерживать дыхание перед каждой картинкой. Фотографии могут быть сделаны с разных ракурсов (например, спереди и сбоку) или с разных положений тела (например, сгибание и разгибание).

Какие риски?

Рентгеновские лучи подвергают вас небольшому воздействию радиации — примерно столько, сколько вы получаете при перелете по пересеченной местности. Количество радиации в рентгеновском снимке слишком мало, чтобы причинить вам вред. Радиация в больших дозах может вызвать рак и врожденные дефекты. Сообщите врачу, если вы беременны или планируете беременность.

Как мне получить результаты теста?

Радиолог незамедлительно просмотрит ваши изображения и напрямую свяжется с вашим лечащим врачом, который, в свою очередь, обсудит с вами результаты.

Источники и ссылки

Если у вас есть дополнительные вопросы об этом диагностическом тесте, обратитесь к врачу, заказавшему тест, или посетите Radiologyinfo.org.

Глоссарий

Рентген: электромагнитное излучение, используемое в диагностической визуализации для просмотра теней плотности тканей в теле, также называемое рентгенограммой.

радиолог: врач, специализирующийся на считывании рентгеновских снимков и других диагностических снимках.


обновлено> 4.2018
проверено> Персонал, Mayfield Imaging Services, Цинциннати, Огайо,

Сертифицированная медицинская информация Mayfield материалов написаны и разработаны клиникой Mayfield Clinic. Мы соблюдаем стандарт HONcode в отношении достоверной информации о здоровье. Эта информация не предназначена для замены медицинских рекомендаций вашего поставщика медицинских услуг.

Рентген костей

Рентген костей использует очень небольшую дозу ионизирующего излучения для получения изображений любой кости в теле.Его обычно используют для диагностики переломов костей или вывиха суставов. Рентген костей — это самый быстрый и простой способ для вашего врача увидеть и оценить переломы костей, травмы и аномалии суставов.

Этот экзамен практически не требует специальной подготовки. Сообщите своему врачу и технологу, если есть вероятность, что вы беременны. Оставьте украшения дома и носите свободную удобную одежду. Вас могут попросить надеть платье.

Что такое рентген костей (рентгенография)?

Рентгеновское обследование помогает врачам диагностировать и лечить заболевания.Он подвергает вас небольшой дозе ионизирующего излучения для получения изображений изнутри тела. Рентген — самый старый и наиболее часто используемый вид медицинской визуализации.

Рентгеновский снимок костей позволяет получать изображения любой кости в теле, включая кисть, запястье, руку, локоть, плечо, позвоночник, таз, бедро, бедро, колено, ногу (голень), лодыжку или ступню.

начало страницы

Каковы наиболее распространенные способы использования этой процедуры?

Рентгенография костей используется для:

  • диагностируют перелом костей или вывих сустава.
  • демонстрируют правильное выравнивание и стабилизацию костных фрагментов после лечения перелома.
  • направляет ортопедические операции, такие как восстановление / слияние позвоночника, замена суставов и уменьшение переломов.
  • ищет травмы, инфекции, артриты, аномальные разрастания костей и костные изменения, наблюдаемые в метаболических условиях.
  • помогает в обнаружении и диагностике рака костей.
  • обнаруживает инородные предметы в мягких тканях вокруг или в костях.

начало страницы

Как мне подготовиться?

Большинство рентгеновских снимков костей не требуют специальной подготовки.

Возможно, вам придется снять одежду и / или переодеться в халат перед экзаменом. Снимите украшения, съемные стоматологические приспособления, очки и любые металлические предметы или одежду, которые могут мешать получению рентгеновских изображений.

Женщины всегда должны сообщать об этом своему врачу и технологу. если они беременны. Врачи не будут проводить много анализов во время беременности, чтобы не подвергнуть плод радиации.Если рентген необходим, врач примет меры предосторожности, чтобы свести к минимуму облучение ребенка. См. Страницу «Безопасность при рентгенографии, интервенционной радиологии и процедурах ядерной медицины» для получения дополнительной информации о беременности и рентгеновских лучах.

начало страницы

Как выглядит оборудование?

Оборудование, обычно используемое для рентгенографии костей, представляет собой рентгеновскую трубку, подвешенную над столом, на котором лежит пациент. В ящике под столом находится рентгеновская пленка или пластина для записи изображений.Иногда рентген делают, когда пациент стоит вертикально, как в случае рентгеновского снимка коленного сустава.

Компактные портативные рентгеновские аппараты можно доставить к пациенту на больничной койке или в отделение неотложной помощи. Рентгеновская трубка подсоединяется к гибкому кронштейну. Технолог протягивает руку над пациентом и помещает под пациента держатель рентгеновской пленки или пластину для записи изображений.

начало страницы

Как работает процедура?

Рентгеновские лучи — это форма излучения, подобная свету или радиоволнам.Рентгеновские лучи проходят через большинство объектов, включая тело. Технолог осторожно направляет рентгеновский луч на интересующую область. Аппарат производит небольшой выброс радиации, который проходит через ваше тело. Излучение записывает изображение на фотопленку или специальный детектор.

Различные части тела в разной степени поглощают рентгеновские лучи. Плотная кость поглощает большую часть излучения, в то время как мягкие ткани (мышцы, жир и органы) пропускают через себя большее количество рентгеновских лучей. В результате на рентгеновском снимке кости выглядят белыми, мягкие ткани — серыми, а воздух — черным.

Большинство рентгеновских изображений представляют собой электронные файлы, хранящиеся в цифровом формате. Ваш врач может легко получить доступ к этим сохраненным изображениям для диагностики и лечения вашего состояния.

начало страницы

Как проходит процедура?

Технолог, специалист, специально обученный для проведения рентгенологических исследований, размещает пациента на рентгеновском столе и помещает держатель рентгеновской пленки или цифровую записывающую пластину под столом в той области тела, на которой создается изображение. При необходимости будут использоваться мешки с песком, подушки или другие устройства для позиционирования, которые помогут вам сохранить правильное положение.Свинцовый фартук можно надеть на область таза или грудь, если это возможно для защиты от радиации.

Вы должны оставаться неподвижными; возможно, вам придется задержать дыхание на несколько секунд, пока технолог сделает рентгеновский снимок. Это помогает снизить вероятность нечеткого изображения. Технолог зайдет за стену или в соседнюю комнату, чтобы активировать рентгеновский аппарат.

Вы можете изменить положение для другого просмотра, и процесс будет повторяться. Обычно делается два или три изображения (под разными углами).

Для сравнения также может быть сделан рентгеновский снимок здоровой конечности или пластинки роста ребенка (где образуется новая кость).

По окончании обследования технолог может попросить вас подождать, пока радиолог не подтвердит, что у него есть все необходимые изображения.

Рентгенологическое исследование костей обычно занимает от пяти до 10 минут.

начало страницы

Что я испытаю во время и после процедуры?

Рентгенография костей сама по себе безболезненна.

Вы можете испытывать дискомфорт из-за прохладной температуры в смотровом кабинете. Вам также может быть неудобно стоять в определенном положении и лежать на жестком столе для осмотра, особенно если вы получили травму. Технолог поможет вам найти наиболее удобное положение, которое при этом обеспечивает качество рентгеновского изображения.

начало страницы

Кто интерпретирует результаты и как их получить?

Радиолог , врач, обученный руководить и интерпретировать радиологические исследования, проанализирует изображения.Радиолог отправит подписанный отчет вашему лечащему врачу или лечащему врачу, который обсудит с вами результаты .

Вам может потребоваться повторное обследование. Если да, ваш врач объяснит, почему. Иногда при повторном обследовании дополнительно оценивается потенциальная проблема с большим количеством просмотров или специальной техникой визуализации. Он также может увидеть, изменилось ли какое-либо изменение проблемы с течением времени. Последующие осмотры часто являются лучшим способом узнать, работает ли лечение или требует внимания проблема.

начало страницы

Каковы преимущества по сравнению с рисками?

Преимущества

  • Рентгенография костей — это самый быстрый и простой способ для врача осмотреть и оценить травмы костей, включая переломы, и аномалии суставов, например артрит.
  • Рентгеновское оборудование относительно недорогое и широко доступно в отделениях неотложной помощи, кабинетах врачей, центрах амбулаторной помощи, домах престарелых и других местах. Это делает его удобным как для пациентов, так и для врачей.
  • Поскольку рентгенография выполняется быстро и легко, она особенно полезна при неотложной диагностике и лечении.
  • После рентгеновского исследования в вашем теле не остается радиации.
  • Рентгеновские лучи обычно не имеют побочных эффектов в типичном диагностическом диапазоне для этого исследования.

Риски

  • Всегда есть небольшая вероятность рака из-за чрезмерного воздействия радиации. Однако, учитывая небольшое количество излучения, используемого при медицинской визуализации, польза от точного диагноза намного превышает связанный с этим риск.
  • Доза облучения для этой процедуры варьируется. См. Страницу «Доза излучения при рентгеновских и КТ-исследованиях» для получения дополнительной информации о дозе излучения.
  • Женщинам следует всегда сообщать своему врачу и рентгенологу, если они беременны. См. Страницу «Безопасность при рентгенографии, интервенционной радиологии и процедурах ядерной медицины» для получения дополнительной информации о беременности и рентгеновских лучах.

Несколько слов о минимизации радиационного облучения

Врачи проявляют особую осторожность во время рентгеновских обследований, чтобы использовать минимально возможную дозу облучения при получении наилучших изображений для оценки.Национальные и международные организации по радиологической защите постоянно пересматривают и обновляют стандарты техники, используемые профессионалами-радиологами.

Современные рентгеновские системы минимизируют паразитное (рассеянное) излучение за счет использования контролируемых рентгеновских лучей и методов контроля дозы. Это гарантирует, что области вашего тела, которые не визуализируются, будут подвергаться минимальному радиационному облучению.

начало страницы

Каковы ограничения рентгенографии костей?

Хотя рентгеновские снимки являются одними из самых четких и детальных изображений костей, они дают мало информации о мышцах, сухожилиях или суставах.

МРТ может быть более полезным для выявления травм костей и суставов (например, разрывов мениска и связок колена, вращательной манжеты и разрывов верхней губы плеча) и для визуализации позвоночника (поскольку кости и спинной мозг могут быть повреждены). оценено). МРТ также может обнаруживать незаметные или скрытые переломы или ушибы костей (также называемые ушибами костей или микротрещинами), которые не видны на рентгеновских снимках.

КТ широко используется для оценки пациентов с травмами в отделениях неотложной помощи. Компьютерная томография может отображать сложные переломы, незначительные переломы или вывихи.У пожилых людей или пациентов с остеопорозом перелом бедра может быть отчетливо виден на компьютерной томографии, тогда как на рентгеновском снимке бедра он почти не виден.

При подозрении на травму позвоночника или другие сложные травмы можно сделать трехмерные реконструированные КТ-изображения без дополнительного облучения, чтобы помочь в диагностике и лечении состояния отдельного пациента.

Ультразвуковая визуализация, при которой для создания диагностических изображений используются звуковые волны вместо ионизирующего излучения, также была полезна при травмах вокруг суставов и при оценке бедер у детей с врожденными проблемами.

начало страницы

Какой тест, процедура или лечение лучше всего мне подходят?

начало страницы

Эта страница была просмотрена 17 января 2020 г.

лучей | Управление научной миссии

РЕНТГЕНОВСКИЕ ИЗЛУЧЕНИЯ И ЭНЕРГИЯ

Рентгеновские лучи имеют гораздо более высокую энергию и гораздо более короткие длины волн, чем ультрафиолетовый свет, и ученые обычно относятся к рентгеновским лучам с точки зрения их энергии, а не длины волны.Частично это связано с тем, что рентгеновские лучи имеют очень маленькие длины волн, от 0,03 до 3 нанометров, настолько малы, что некоторые рентгеновские лучи имеют размер не больше одного атома многих элементов.

На этой мозаике из нескольких изображений центральной части нашей галактики Млечный Путь, сделанных рентгеновской обсерваторией Чандра, видны сотни белых карликов, нейтронных звезд и черных дыр. По отдельности Солнечная и гелиофизическая обсерватория (SOHO) сфотографировала эти изображения Солнца, представляющие полный солнечный цикл с 1996 по 2006 год.Предоставлено: NASA / UMass / D.Wang et al. Изображения Солнца с SOHO — Консорциум EIT: NASA / ESA

ОТКРЫТИЕ РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ

Рентгеновские лучи были впервые обнаружены и задокументированы в 1895 году немецким ученым Вильгельмом Конрадом Рентгеном. Он обнаружил, что потоки рентгеновских лучей через руки и кисти создают подробные изображения костей внутри. Когда вам делают рентгеновский снимок, на одну сторону вашего тела надевают чувствительную к рентгеновскому излучению пленку, и рентгеновские лучи проходят сквозь вас. Поскольку кости плотные и поглощают больше рентгеновских лучей, чем кожа, тени от костей остаются на рентгеновской пленке, в то время как кожа кажется прозрачной.

Рентгеновский снимок зубов. Вы видите наполнение?

Рентгеновский снимок годовалой девочки, проглотившей булавку. Вы можете это найти?

Пики излучения нашего Солнца наблюдаются в видимом диапазоне, но корона Солнца намного горячее и излучает в основном рентгеновские лучи. Для изучения короны ученые используют данные, собранные детекторами рентгеновского излучения на спутниках, находящихся на орбите вокруг Земли.Японский космический аппарат Hinode сделал эти рентгеновские изображения Солнца, которые позволяют ученым видеть и регистрировать потоки энергии внутри короны.

Предоставлено: Hinode JAXA / NASA / PPARC

.
ТЕМПЕРАТУРА И СОСТАВ

Физическая температура объекта определяет длину волны испускаемого им излучения. Чем горячее объект, тем короче длина волны пикового излучения. Рентгеновские лучи исходят от объектов, температура которых составляет миллионы градусов Цельсия, таких как пульсары, остатки галактических сверхновых и аккреционный диск черных дыр.

Из космоса рентгеновские телескопы собирают фотоны из заданной области неба. Фотоны направляются на детектор, где они поглощаются, и регистрируются энергия, время и направление отдельных фотонов. Такие измерения могут дать подсказки о составе, температуре и плотности далеких небесных сред. Из-за высокой энергии и проницаемости рентгеновских лучей, рентгеновские лучи не будут отражаться, если они попадут в зеркало (почти так же, как пули врезаются в стену).Рентгеновские телескопы фокусируют рентгеновские лучи на детекторе с помощью зеркал скользящего падения (точно так же, как пули рикошетируют, когда они ударяются о стену под скользящим углом).

Марсоход НАСА, Spirit, использовал рентгеновские лучи для обнаружения спектральных признаков цинка и никеля в марсианских породах. В приборе Alpha Proton X-Ray Spectrometer (APXS) используются два метода: один для определения структуры, а другой — для определения состава. Оба эти метода лучше всего работают с более тяжелыми элементами, такими как металлы.

СУПЕРНОВА

Поскольку атмосфера Земли блокирует рентгеновское излучение, телескопы с детекторами рентгеновского излучения должны быть расположены над поглощающей атмосферой Земли.Остаток сверхновой Кассиопея A (Cas A) был получен тремя крупными обсерваториями НАСА, и данные всех трех обсерваторий были использованы для создания изображения, показанного ниже. Инфракрасные данные космического телескопа Спитцера окрашены в красный цвет, оптические данные космического телескопа Хаббла — желтого цвета, а рентгеновские данные из рентгеновской обсерватории Чандра — зеленого и синего цвета.

Рентгеновские данные показывают горячие газы с температурой около десяти миллионов градусов по Цельсию, которые образовались, когда материал, выброшенный сверхновой, врезался в окружающий газ и пыль со скоростью около десяти миллионов миль в час.Сравнивая инфракрасные и рентгеновские изображения, астрономы узнают больше о том, как относительно холодные частицы пыли могут сосуществовать в сверхгорячем газе, производящем рентгеновские лучи.

Источник: рентгеновский снимок: NASA / CXC / SAO; Оптический: NASA / STScI; Инфракрасный: NASA / JPL-Caltech / Steward / O.Krause et al.

АВРОРА ЗЕМЛИ В РЕНТГЕНОВСКОМ ИЗЛУЧЕНИИ

Солнечные бури на Солнце выбрасывают к Земле облака энергичных частиц. Эти высокоэнергетические частицы могут быть захвачены магнитосферой Земли, создавая геомагнитные бури, которые иногда приводят к полярным сияниям.Энергичные заряженные частицы Солнца, вызывающие полярное сияние, также заряжают энергией электроны в магнитосфере Земли. Эти электроны движутся вдоль магнитного поля Земли и в конечном итоге ударяются о ионосферу Земли, вызывая рентгеновское излучение. Эти рентгеновские лучи не опасны для людей на Земле, потому что они поглощаются нижними частями атмосферы Земли. Ниже приведено изображение рентгеновского сияния, полученное прибором Polar Ionospifer X-ray Imaging Experiment (PIXIE) на борту спутника Polar.

Предоставлено: POLAR, PIXIE, NASA

.

Начало страницы | Далее: Гамма-лучи


Цитирование
APA

Национальное управление по аэронавтике и исследованию космического пространства, Управление научных миссий. (2010). Рентген. Получено [вставить дату — например, 10 августа 2016 г.] , с веб-сайта NASA Science: http://science.nasa.gov/ems/11_xrays

MLA

Управление научной миссии. «Рентгеновские лучи» NASA Science . 2010. Национальное управление по аэронавтике и исследованию космического пространства. [укажите дату — например, 10 августа 2016 г.] http://science.nasa.gov/ems/11_xrays

Медицинская рентгенография | FDA


Описание

Медицинская визуализация позволила улучшить диагностику и лечение множества заболеваний у детей и взрослых.

Существует множество типов — или модальностей — процедур медицинской визуализации, в каждой из которых используются разные технологии и методы.Компьютерная томография (КТ), рентгеноскопия и радиография («обычный рентгеновский снимок», включая маммографию) используют ионизирующее излучение для создания изображений тела. Ионизирующее излучение — это форма излучения, которая обладает достаточной энергией, чтобы потенциально вызвать повреждение ДНК и может повысить риск развития рака на протяжении всей жизни человека.

КТ, рентгенография и рентгеноскопия работают по одному и тому же основному принципу: рентгеновский луч проходит через тело, где часть рентгеновских лучей либо поглощается, либо рассеивается внутренними структурами, а оставшаяся рентгеновская картина передается на детектор (например,g., фильм или экран компьютера) для записи или дальнейшей обработки на компьютере. Эти экзамены различаются по своему назначению:

  • Рентгенография — записывается одно изображение для последующей оценки. Маммография — это особый вид рентгенографии для визуализации внутренних структур груди.
  • Рентгеноскопия — непрерывное рентгеновское изображение отображается на мониторе, что позволяет в реальном времени контролировать процедуру или прохождение контрастного вещества («красителя») через тело. Рентгеноскопия может привести к относительно высоким дозам облучения, особенно для сложных интервенционных процедур (таких как размещение стентов или других устройств внутри тела), которые требуют проведения рентгеноскопии в течение длительного периода времени.
  • CT — многие рентгеновские изображения записываются, когда детектор перемещается по телу пациента. Компьютер преобразует все отдельные изображения в изображения поперечного сечения или «срезы» внутренних органов и тканей. КТ-исследование требует более высокой дозы облучения, чем обычная рентгенография, потому что КТ-изображение реконструируется по множеству отдельных рентгеновских проекций.

Преимущества / риски

Преимущества

Открытие рентгеновских лучей и изобретение компьютерной томографии представляет собой крупный прогресс в медицине.Рентгеновские снимки признаны ценным медицинским инструментом для самых разных обследований и процедур. Привыкли к:

  • неинвазивно и безболезненно помогают диагностировать заболевание и контролировать терапию;
  • поддерживает планирование медикаментозного и хирургического лечения; и
  • направляет медицинский персонал, когда он вводит катетеры, стенты или другие устройства внутрь тела, лечит опухоли или удаляет сгустки крови или другие засорения.
Риски

Как и во многих других областях медицины, существуют риски, связанные с использованием рентгеновской визуализации, при которой для получения изображений тела используется ионизирующее излучение.Ионизирующее излучение — это форма излучения, обладающая достаточной энергией, чтобы потенциально вызвать повреждение ДНК. Риски от воздействия ионизирующего излучения включают:

  • небольшое увеличение вероятности того, что у человека, подвергшегося облучению рентгеновскими лучами, в более позднем возрасте разовьется рак. (Общую информацию для пациентов и медицинских работников по выявлению и лечению рака можно получить в Национальном институте рака.)
  • тканевые эффекты, такие как катаракта, покраснение кожи и выпадение волос, которые возникают при относительно высоких уровнях радиационного воздействия и редки для многих типов визуализационных исследований.Например, обычное использование компьютерного томографа или обычного рентгенографического оборудования не должно приводить к тканевым эффектам, но доза на кожу от некоторых длительных и сложных процедур интервенционной рентгеноскопии может в некоторых обстоятельствах быть достаточно высокой, чтобы вызвать такие эффекты.

Другой риск рентгеновской визуализации — возможные реакции, связанные с внутривенным введением контрастного вещества или «красителя», который иногда используется для улучшения визуализации.

Риск развития рака при воздействии радиации на медицинские изображения, как правило, очень невелик и зависит от:

  • доза облучения — Пожизненный риск рака увеличивается, чем больше доза и чем больше рентгеновских исследований проходит пациент.
  • возраста пациента. Риск развития рака на протяжении всей жизни выше для пациента, получившего рентгеновские лучи в более молодом возрасте, чем для пациента, получившего рентгеновские лучи в более старшем возрасте.
  • пол пациента. Женщины подвергаются несколько более высокому риску развития радиационно-ассоциированного рака в течение жизни, чем мужчины, после того, как получили такое же облучение в одном и том же возрасте.
  • область тела — Некоторые органы более радиочувствительны, чем другие.

Приведенные выше утверждения являются обобщениями, основанными на научном анализе больших наборов данных о населении, например о выживших, подвергшихся облучению от атомной бомбы.Один из отчетов о таких анализах — «Риски для здоровья от воздействия низких уровней ионизирующего излучения: BEIR VII, фаза 2» (Комитет по оценке рисков для здоровья от воздействия низких уровней ионизирующего излучения, Национальный исследовательский совет). Хотя конкретные люди или случаи могут не вписываться в такие обобщения, они по-прежнему полезны для разработки общего подхода к радиационной безопасности медицинской визуализации путем выявления групп риска или процедур с повышенным риском.

Поскольку радиационные риски зависят от воздействия радиации, знание типичных радиационных воздействий, связанных с различными визуализационными исследованиями, полезно для общения между врачом и пациентом.(Для сравнения доз облучения, связанных с различными процедурами визуализации, см .: Эффективные дозы в радиологии и диагностической ядерной медицине: Каталог)

Медицинское сообщество подчеркнуло снижение дозы облучения при КТ из-за относительно высокой дозы облучения при КТ-исследованиях (по сравнению с радиографией) и их более широкого использования, как сообщается в отчете № 160 Национального совета по радиационной защите и измерениям (NCRP). Поскольку при типичном использовании многих рентгеновских устройств (включая компьютерную томографию) эффекты на ткани крайне редки, основной проблемой радиационного риска для большинства визуализационных исследований является рак; однако длительное время воздействия, необходимое для сложных интервенционных рентгеноскопических исследований, и, как следствие, высокие дозы на кожу, могут привести к поражению тканей даже при правильном использовании оборудования.Для получения дополнительной информации о рисках, связанных с определенными типами рентгеновских исследований, посетите веб-страницы КТ, рентгеноскопии, рентгенографии и маммографии.

Уравновешивание преимуществ и рисков

Хотя польза от клинически приемлемого рентгеновского исследования, как правило, намного превышает риск, следует предпринять усилия, чтобы минимизировать этот риск за счет уменьшения ненужного воздействия ионизирующего излучения. Чтобы снизить риск для пациента, все обследования с использованием ионизирующего излучения следует проводить только тогда, когда это необходимо для ответа на медицинский вопрос, лечения заболевания или руководства процедурой.Если есть медицинская необходимость в конкретной процедуре визуализации и другие исследования, в которых не используется излучение или используется меньшее количество излучения, менее целесообразны, тогда преимущества превышают риски, и соображения радиационного риска не должны влиять на решение врача о проведении исследования или решение пациента о проведении исследования. процедура. Однако при выборе настроек оборудования для минимизации радиационного облучения пациента всегда следует придерживаться принципа «разумно достижимого минимума» (ALARA).

Факторы, влияющие на пациента, очень важно учитывать в этом балансе преимуществ и рисков.Например:

  • Поскольку более молодые пациенты более чувствительны к радиации, следует проявлять особую осторожность в снижении радиационного облучения педиатрических пациентов при всех типах рентгеновских обследований (см. Веб-страницу «Педиатрическая рентгенография»).
  • Следует проявлять особую осторожность при визуализации беременных пациенток из-за возможных последствий радиационного воздействия на развивающийся плод.
  • Польза от возможного обнаружения заболевания должна быть тщательно сбалансирована с рисками скринингового исследования на здоровых бессимптомных пациентах (более подробная информация о КТ-скрининге доступна на веб-странице КТ).

Информация для пациентов

Рентгенологические исследования (КТ, рентгеноскопия и рентгенография) следует выполнять только после тщательного рассмотрения потребностей пациента в отношении здоровья. Их следует выполнять только в том случае, если лечащий врач считает их необходимыми для ответа на клинический вопрос или для руководства лечением заболевания. Клиническая польза от приемлемого с медицинской точки зрения рентгенологического исследования перевешивает небольшой радиационный риск. Однако следует предпринять усилия, чтобы минимизировать этот риск.

Вопросы, которые следует задать своему врачу

Пациенты и родители детей, проходящих рентгеновское обследование, должны быть хорошо проинформированы и подготовлены:

  • Отслеживание историй медицинских изображений в рамках обсуждения с лечащим врачом, когда рекомендуется новое обследование (см. Карту записи медицинских снимков пациента Image Wisely / FDA и карту «Записи медицинских снимков моего ребенка» от Alliance for Radiation Безопасность в педиатрической визуализации).
  • Информировать своего врача, если они беременны или думают, что могут быть беременны.
  • Спросить лечащего врача о преимуществах и рисках процедур визуализации, таких как:
    • Как результаты обследования будут использоваться для оценки моего состояния или направления моего лечения (или лечения моего ребенка)?
    • Существуют ли альтернативные экзамены, в которых не используется ионизирующее излучение, которые одинаково полезны?
  • Запрос в центр визуализации:
    • Если используются методы снижения дозы облучения, особенно для уязвимых групп населения, таких как дети.
    • О любых дополнительных шагах, которые могут потребоваться для выполнения визуализационного исследования (например, введение перорального или внутривенного контрастного вещества для улучшения визуализации, седативного эффекта или расширенной подготовки).
    • Если объект аккредитован. (Аккредитация может быть доступна только для определенных типов рентгеновских изображений, таких как КТ.)

Информационные ссылки FDA для пациентов:

Доступна обширная информация о типах рентгеновских исследований, заболеваниях и состояниях, при которых используются различные типы рентгеновских изображений, а также о рисках и преимуществах рентгеновской визуализации.Следующие веб-сайты не поддерживаются FDA:

Информация для медицинских работников

Принципы радиационной защиты: обоснование и оптимизация

Как подчеркивается в его Инициативе по сокращению ненужного радиационного облучения от медицинских изображений, FDA рекомендует, чтобы специалисты по визуализации следовали двум принципам радиационной защиты пациентов, разработанным Международной комиссией по радиологической защите (Публикация 103, Рекомендации Международной комиссии по радиологической защите 2007 г. Protection; Публикация 105, Радиологическая защита в медицине):

  1. Обоснование: Следует оценить, что процедура визуализации приносит больше пользы (например,g., диагностическая эффективность изображений), чем вред (например, ущерб, связанный с радиационно-индуцированным раком или тканевыми эффектами) для отдельного пациента. Поэтому все обследования с использованием ионизирующего излучения следует проводить только в случае необходимости ответить на медицинский вопрос, вылечить заболевание или направить процедуру. Перед тем, как направить пациента на какое-либо рентгеновское обследование, следует тщательно изучить клинические показания и историю болезни пациента.
  2. Оптимизация: При рентгенологических исследованиях следует использовать методы, адаптированные для введения минимальной дозы облучения, обеспечивающей качество изображения, достаточное для диагностики или вмешательства (т.д., дозы облучения должны быть «разумно достижимыми низкими» (ALARA)). Используемые технические факторы следует выбирать на основе клинических показаний, размера пациента и анатомической области сканирования; и оборудование следует надлежащим образом обслуживать и проверять.

Хотя направляющий врач несет основную ответственность за обоснование, а группа визуализации (например, визуализатор, технолог и медицинский физик) несет основную ответственность за оптимизацию обследования, общение между направляющим врачом и группой визуализации может помочь гарантировать, что пациент получит соответствующее обследование при оптимальной дозе облучения.Обеспечение качества на предприятии и обучение персонала с акцентом на радиационную безопасность имеют решающее значение для применения принципов радиационной защиты при рентгеновских исследованиях.

Осведомленность и общение с пациентом необходимы для радиационной защиты. Как подчеркивалось на ежегодном собрании Национального совета по радиационной защите и измерениям 2010 г., посвященном информированию о радиационных преимуществах и рисках при принятии решений [протоколы, опубликованные в Health Physics , 101 (5), 497–629 (2011)], в которых сообщается о рисках Облучение пациентов и особенно родителей маленьких детей, проходящих визуализационное обследование, создает особые проблемы.Кампании Image Wisely и Image Gently, сайт МАГАТЭ по радиационной защите пациентов и другие ресурсы, перечисленные ниже, предоставляют инструменты, которые пациенты, родители и медицинские работники могут использовать, чтобы лучше информироваться о рисках и преимуществах медицинской визуализации с использованием ионизирующего излучения.

Общие рекомендации

FDA рекомендует медицинским работникам и администраторам больниц уделять особое внимание снижению ненужного радиационного облучения, выполнив следующие действия:

  • Направляющие врачи должны:
    • Получите знания о принципах радиационной безопасности и о том, как донести их до пациентов.
    • Обсудите обоснование обследования с пациентом и / или родителем, чтобы убедиться, что они понимают преимущества и риски.
    • Уменьшить количество ненадлежащих направлений (т. Е. Улучшить обоснованность рентгеновских исследований) с помощью:

1. определение необходимости обследования для ответа на клинический вопрос;

2. рассмотрение альтернативных обследований, которые требуют меньшего или нулевого воздействия радиации, таких как УЗИ или МРТ, если это целесообразно с медицинской точки зрения; и

3.проверка истории болезни пациента, чтобы избежать дублирования обследований.

  • Бригады визуализации (например, врач, радиолог, медицинский физик) должны:
    • Пройдите обучение по вопросам радиационной безопасности для конкретного оборудования, используемого на их предприятии, в дополнение к базовому непрерывному образованию по этой теме.
    • Разработайте протоколы и схемы методик (или используйте те, которые доступны на оборудовании), которые оптимизируют экспозицию для данной клинической задачи и группы пациентов (см. Также веб-страницу «Педиатрическая рентгенография»).По возможности используйте инструменты для снижения дозы. Если возникают вопросы, обратитесь к производителю за помощью о том, как правильно и безопасно использовать устройство.
    • Проводите регулярные тесты контроля качества, чтобы убедиться, что оборудование работает должным образом.
    • В рамках программы обеспечения качества, в которой особое внимание уделяется управлению облучением, следует контролировать дозы, получаемые пациентами, и проверять дозы, полученные в учреждении, на соответствие диагностическим референсным уровням, если таковые имеются.
  • Администрация больницы должна:
    • Спросите о наличии функций снижения дозы и конструктивных особенностей для использования с особыми группами пациентов (т.е. педиатрических пациентов) при принятии решения о покупке.
    • Обеспечить соответствующие полномочия и обучение (с акцентом на радиационную безопасность) медицинского персонала, использующего рентгеновское оборудование.
    • Убедитесь, что принципы радиационной защиты включены в общую программу обеспечения качества предприятия.
    • Зарегистрируйте свое учреждение в программе аккредитации для определенных методов визуализации, если они доступны.
Информация для лечащего врача

Ненужное облучение может быть результатом процедур медицинской визуализации, которые не оправданы с медицинской точки зрения с учетом признаков и симптомов пациента, или когда возможно альтернативное обследование с более низкой дозой.Даже если обследование оправдано с медицинской точки зрения, без достаточной информации об истории болезни пациента, направляющий врач может без необходимости назначить повторение процедуры визуализации, которая уже была проведена.

Клиницисты могут управлять обоснованием, используя основанные на фактах критерии направления к специалистам для выбора наиболее подходящей процедуры визуализации для конкретных симптомов или медицинского состояния пациента. Критерии направления к специалистам для всех типов изображений в целом и для изображений сердца в частности предоставляются, соответственно, Американским колледжем радиологии и Американским колледжем кардиологов.Кроме того, Центры услуг Medicare и Medicaid оценивают влияние надлежащего использования расширенных услуг визуализации посредством использования систем поддержки принятия решений в своей демонстрации Medicare Imaging Demonstration, которая тестирует использование автоматизированных систем поддержки принятия решений, включающих критерии направления. Международное агентство по атомной энергии опубликовало информацию для практикующих врачей.

Еще одним важным аспектом обоснования является использование рекомендаций по отбору.Информация, относящаяся к CT, доступна на веб-странице CT.

Информация для группы визуализации

Доза облучения пациента считается оптимальной, когда изображения адекватного качества для желаемой клинической задачи создаются с наименьшим количеством излучения, которое считается разумно необходимым. Учреждение может использовать свою программу обеспечения качества (QA) для оптимизации дозы облучения для каждого вида рентгеновских исследований, процедур и задач медицинской визуализации, которые оно выполняет. Размер пациента является важным фактором, который следует учитывать при оптимизации, поскольку более крупным пациентам обычно требуется более высокая доза облучения, чем пациентам меньшего размера, чтобы создавать изображения того же качества.

Обратите внимание, что может существовать ряд оптимизированных настроек экспозиции в зависимости от возможностей оборудования для визуализации и требований врача к качеству изображения. Радиационное облучение может быть оптимизировано надлежащим образом для одного и того же исследования и размера пациента в двух учреждениях (или на двух разных моделях оборудования для визуализации), даже если дозы облучения не идентичны.

Одним из важных аспектов программы обеспечения качества является регулярный и систематический мониторинг дозы облучения и выполнение последующих действий, когда дозы считаются аномально высокими (или низкими).Вот основы мониторинга доз и последующего наблюдения QA:

  1. Запись индексов дозы для конкретных модификаций, настроек связанного оборудования и габитуса пациента, полученных, например, из данных структурированного отчета о дозах облучения DICOM. [В качестве конкретного примера, индексы дозы CT стандартизированы как CTDI vol и произведение дозы на длину (DLP), , и они основаны на измерениях в стандартизированных дозиметрических фантомах. При рентгеноскопии типичные индексы дозы включают эталонную керму воздуха и произведение площади кермы воздуха .]
  2. Идентификация и анализ значений индекса дозы и условий, которые последовательно отклоняются от соответствующих норм.
  3. Расследование обстоятельств, связанных с такими отклонениями.
  4. Корректировки клинической практики и / или протоколов для уменьшения (или, возможно, увеличения) дозы, если это необходимо, при сохранении изображений надлежащего качества для диагностики, мониторинга или вмешательства.
  5. Периодические проверки на предмет обновления действующих норм или принятия новых норм.Обзоры могут быть основаны на тенденциях в практике с течением времени, работе оператора оборудования или практикующего врача или на авторитетно установленных значениях индекса дозы, связанных с наиболее распространенными обследованиями и процедурами.

Нормы называются «диагностическими референтными уровнями» (DRL) или просто «референтными уровнями» для интервенционных рентгеноскопических исследований. Они создаются национальными, государственными, региональными или местными властями, а также профессиональными организациями. Для конкретной задачи медицинской визуализации и размера группы пациента DRL обычно устанавливается на 75-м процентиле (третьем квартиле) распределения значений индекса дозы, связанного с клинической практикой.ДХО не являются ни дозовыми, ни пороговыми значениями. Скорее, они служат руководством к передовой практике, не гарантируя оптимальной производительности. Более высокие, чем ожидалось, дозы облучения — не единственная проблема; Дозы облучения, которые существенно ниже ожидаемых, могут быть связаны с плохим качеством изображения или неадекватной диагностической информацией. FDA поощряет создание DRL через развитие национальных регистров доз.

Учреждения могут характеризовать свои собственные методы дозирования радиации в терминах «местных» референтных уровней, т.е.е., медианы или средние значения значений индекса дозы, связанных с соответствующими протоколами, которые они выполняют. Местные референтные уровни следует сравнивать с региональными или национальными референтными диагностическими уровнями, если таковые имеются, в рамках комплексной программы обеспечения качества. Такие сравнения необходимы для деятельности по повышению качества. Однако, даже когда региональные или национальные DRL недоступны для сравнения, отслеживание индексов доз на объекте может иметь значение, помогая идентифицировать исследования с дозами, которые выходят далеко за пределы их обычных диапазонов.

Поскольку практика визуализации и популяция пациентов могут варьироваться в зависимости от страны и внутри страны, каждая страна или регион должны установить свои собственные DRL. Хотя в центре внимания приведенного ниже списка ресурсов находятся руководящие принципы США или более общие руководящие принципы международных организаций по радиационной защите, ссылки включают несколько примеров того, как другие страны устанавливают и используют ДХО. Обратите внимание: хотя использование ДХО в США является добровольным, во многих европейских странах это является нормативным требованием.

Ресурсы, относящиеся к диагностическим референсным уровням:

  • Диагностические эталонные уровни в медицинской визуализации: обзор и дополнительные рекомендации — Международная комиссия по радиологической защите (ICRP, 2002). Публикация ICRP 105 (2007), раздел 10 («Диагностические эталонные уровни»), обобщает соответствующие разделы предыдущих публикаций ICRP 60, 73 и Дополнительное руководство 2, и он содержит большую часть той же информации, что и в документе 2002 года.
  • Референсные диагностические уровни и достижимые дозы, а также контрольные уровни в медицинской и стоматологической визуализации: рекомендации по применению в США — U.S. Отчет № 172 Национального совета по радиационной защите и измерениям (NCRP).
  • Программа общенациональной оценки тенденций в области рентгеновского излучения (NEXT), созданная в сотрудничестве между FDA и Конференцией директоров программ радиационного контроля (CRCPD), исследует дозы для процедур. Эти данные о дозовом индексе можно использовать для расчета диагностических референсных уровней для использования в программах обеспечения качества.
  • Справочные значения для диагностической радиологии: применение и влияние, (J. E. Gray et al., Radiology Vol.235, No. 2, pp. 354-358, 2005) — Целевая группа AAPM по контрольным значениям для диагностических рентгеновских исследований.
  • Американский колледж радиологии (ACR) Информация о DRL и регистре доз:
  • Image Мудрое заявление о диагностических контрольных уровнях (2010 г.).
  • Референсные диагностические уровни для медицинского облучения пациентов: руководство МКРЗ и соответствующие количественные показатели ICRU (М. Розенштейн, Health Physics Vol. 95, No. 5, pp. 528-534, 2008).
  • Международное агентство по атомной энергии (МАГАТЭ)
  • Примеры разработки и использования ДХО в разных странах:
    • Европейская сеть ALARA — диагностические контрольные уровни (DRL) в Европе.
    • Информационный бюллетень национального диагностического контрольного уровня
    • (Австралийское агентство по радиационной защите и ядерной безопасности) — показывает, как предприятия могут количественно определять дозы (особенно для CT) и соотносить их с DRL.
    • Применение диагностических референтных уровней: общие принципы и ирландская точка зрения (Кейт Мэтьюз и Патрик С. Бреннан, Радиография, том 15, стр. 171-178, 2009). Для конкретного примера в КТ см. Дозы пациентов при КТ-исследованиях в Швейцарии: внедрение национальных диагностических референсных уровней, (R.Treier et al., Radiation Protection Dosimetry Vol. 142, №№ 2–4, стр. 244–254, 2010 г.).

В дополнение к ссылкам, относящимся к вышеуказанным диагностическим референсным уровням, следующие ресурсы предоставляют информацию об обеспечении качества и обучении персонала, важную для радиационной защиты:

  • Обучение и подготовка в области радиологической защиты для диагностических и интервенционных процедур (Публикация 113 МКРЗ, 2009 г.).
  • Изображение с умом: радиационная безопасность в медицинских изображениях взрослых
  • Альянс за радиационную безопасность в педиатрической визуализации предлагает профессионалам материалы, касающиеся тестов и процедур рентгеновской визуализации, а также информацию, предназначенную для технологов, радиологов, медицинских физиков и лечащих врачей.
  • Общество физиков здравоохранения — Информация о радиационной безопасности для медицинского персонала
  • Радиационная защита пациентов — Международное агентство по атомной энергии (МАГАТЭ, 2011):
  • Глобальная инициатива ВОЗ по радиационной безопасности в медицинских учреждениях — Всемирная организация здравоохранения: отчет (2008 г.) определяет вопросы, проблемы, роль международных организаций и профессиональных органов, а также оценку, управление и коммуникацию радиационного риска; Методы визуализации (2012).

Другие публикации FDA, касающиеся повышения безопасности и качества рентгеновской визуализации среди медицинских работников:

Для получения более конкретных ресурсов FDA см. Также веб-страницы, посвященные отдельным модальностям рентгеновской визуализации.

Нормы и правила, относящиеся к средствам визуализации и персоналу

В соответствии с Законом о стандартах качества маммографии (MQSA) FDA регулирует квалификацию персонала, программы контроля и обеспечения качества, а также аккредитацию и сертификацию маммографических учреждений.FDA также имеет правила, касающиеся безопасности, эффективности и радиационного контроля всех рентгеновских устройств (см. Раздел «Информация для промышленности»). В отдельных штатах и ​​других федеральных агентствах использование рентгеновских устройств регулируется посредством рекомендаций и требований к квалификации персонала, программам обеспечения и контроля качества, а также аккредитации учреждения.

В соответствии с разделом 1834 (e) Закона о социальном обеспечении с поправками, внесенными Законом об улучшении медицинской помощи для пациентов и поставщиков медицинских услуг (MIPPA) от 2008 г., к 1 января 2012 г. автономные средства расширенной диагностической визуализации (выполнение КТ, МРТ, ядерная медицина) которые обращаются за возмещением расходов по программе Medicare, должны быть аккредитованы одной из трех организаций по аккредитации (Американский колледж радиологии, Межсоциальная комиссия по аккредитации или Объединенная комиссия), признанных Центрами услуг Medicare и Medicaid (CMS).CMS опубликовала дополнительную информацию об аккредитации Advanced Diagnostic Imaging. Это требование не распространяется на больницы, которые подпадают под действие отдельных условий участия в программе Medicare, изложенных в статьях 42 CFR 482.26 и 42 CFR 482.53, которые регулируют предоставление услуг радиологической и ядерной медицины, соответственно. Информацию, касающуюся руководящих указаний CMS по толкованию этих больничных правил, можно найти в Приложении A к Руководству штата по эксплуатации — Протокол обследования, правила и инструкции по толкованию для больниц.Также доступен полный список руководств по CMS, доступных только в Интернете.

В отдельных штатах есть правила и инструкции, применимые к средствам визуализации и персоналу. Конференция директоров программ радиационного контроля (CRCPD) публикует Предлагаемые государственные правила радиационного контроля, которые могут быть добровольно приняты государствами. Ряд штатов обновляют свои правила и инструкции для повышения радиационной безопасности. Кроме того, профессиональные организации опубликовали инструкции, гарантирующие, что предприятия и государственные инспекторы имеют информацию, необходимую для соблюдения этих правил.Примеры таких усилий включают обучение государственных инспекторов компьютерной томографии, проводимое совместно Американской ассоциацией физиков в медицине (AAPM) и CRCPD в мае 2011 года, а также рекомендации Калифорнийских клинических и академических медицинских физиков (C-CAMP) о том, как внедрить новую Калифорнию. закон о дозах (SB 1237).

FDA работало с Агентством по охране окружающей среды и Федеральным межведомственным руководящим комитетом по радиационным стандартам (ISCORS) для разработки и публикации Федерального руководства по радиационной защите для диагностических и интервенционных рентгеновских процедур (FGR-14) по медицинскому использованию излучения в федеральных учреждениях. удобства.Хотя этот всеобъемлющий набор добровольных руководств по визуализации детей и взрослых был написан для федеральных учреждений, большинство рекомендаций применимо ко всем учреждениям и специалистам по рентгеновской визуализации.

Информация для промышленности

FDA регулирует производителей устройств для получения рентгеновских изображений посредством радиационного контроля электронных продуктов (EPRC) и положений о медицинских устройствах Федерального закона о пищевых продуктах, лекарствах и косметических средствах. FDA определяет требования, относящиеся к этим положениям, посредством предписания «положений» или «правил», которые являются обязательными, и дает соответствующие рекомендации посредством выпуска «руководств», которые не являются обязательными.

Требования к радиационному контролю электронных изделий (EPRC) для производителей и сборщиков

Производители и сборщики электронных изделий, излучающих излучение, продаваемых в Соединенных Штатах, несут ответственность за соблюдение правил радиологического здоровья, содержащихся в Разделе 21 Свода федеральных правил (подраздел J, Радиологическое здоровье).

Производители систем рентгеновской визуализации несут ответственность за соблюдение всех применимых требований Раздела 21 Свода федеральных правил (подраздел J, Радиологическое здоровье), части с 1000 по 1005:
1000 — Общие
1002 — Записи и отчеты
1003 — Уведомление дефекты или несоблюдение требований
1004 — Выкуп, ремонт или замена электронных продуктов
1005 — Импорт электронных продуктов

Кроме того, системы рентгеновской визуализации должны соответствовать стандартам радиационной безопасности, изложенным в Разделе 21 Свода федеральных правил (подраздел J, Радиологическое здоровье), части 1010 и 1020: дополнительные сведения см. Информация.
1010 — Рабочие стандарты для электронных продуктов: общие
1020.30 — Диагностические рентгеновские системы и их основные компоненты
1020.31 — Радиографическое оборудование
1020.32 — Флюороскопическое оборудование
1020.33 — Оборудование для компьютерной томографии (КТ)

Следующие ресурсы предоставляют дополнительную информацию о продуктах с излучением излучения, положениях EPRC и соответствующих требованиях к отчетности:

Ниже приведены инструкции для персонала FDA, но они также могут быть полезны для промышленности при проверке рентгеновского оборудования:

Требования к медицинскому оборудованию для производителей рентгеновских аппаратов

Медицинское рентгеновское оборудование также должно соответствовать требованиям к медицинскому оборудованию, изложенным в Разделе 21 Свода федеральных нормативных актов (подраздел H, Медицинские устройства).Для получения дополнительной информации о требованиях к медицинскому оборудованию см .:

Стандарты, признанные FDA

Законом о модернизации Управления по санитарному надзору за качеством пищевых продуктов и медикаментов 1997 г. (FDAMA) FDA официально признало несколько стандартов, касающихся рентгеновской визуализации. Когда производители подают предварительные уведомления в FDA для получения разрешения или одобрения устройств, декларации о соответствии стандартам, признанным FDA, могут избавить производителей от необходимости предоставлять данные, подтверждающие безопасность и эффективность, охватываемые конкретными признанными стандартами, которым соответствуют устройства.Для получения дополнительной информации см .:

Сообщение о проблемах в FDA

Своевременное сообщение о побочных эффектах может помочь FDA выявить и лучше понять риски, связанные с продуктом. Мы рекомендуем поставщикам медицинских услуг и пациентам, которые подозревают наличие проблемы с устройством медицинской визуализации, подавать добровольный отчет через MedWatch, Программу FDA по информации о безопасности и сообщению о нежелательных явлениях.

Медицинский персонал, нанятый учреждениями, которые подпадают под требования FDA к отчетности учреждений, должен следовать процедурам отчетности, установленным их учреждениями.

Производители, дистрибьюторы, импортеры медицинских устройств и предприятия, использующие устройства (в том числе многие медицинские учреждения), должны соблюдать Правила отчетности по медицинским устройствам (MDR) 21 CFR Part 803.

Обязательные отчеты для производителей медицинских рентгеновских аппаратов

Отраслевое руководство — заинтересованные документы

Прочие ресурсы

рентгеновских лучей | Сидарс-Синай

Рентгеновские лучи — одна из старейших форм медицинской визуализации.Рентгеновский луч — это электромагнитный луч, который направляется через ваше тело на кусок пленки позади него. Это позволяет врачам делать снимки вашего тела изнутри.

Различные части тела по-разному поглощают рентгеновские лучи. Кальций в кости полностью блокирует рентгеновские лучи. Это создает белую тень на пленке. Поскольку мягкие ткани, такие как органы, мышцы, жир и нервы, частично или полностью блокируют луч, они отображаются в оттенках серого.

Хотя рентгеновские лучи особенно полезны при исследовании костных структур, таких как позвоночник, они бесполезны для выявления повреждения нервов или грыжи межпозвоночных дисков между костями позвоночника (позвонками).

Рентген, однако, можно использовать для:

  • Проверить, есть ли сколы, вывихи или переломы костей
  • Оценить травмы сустава или позвоночника
  • Выявление инфекций костей
  • Диагностика и мониторинг состояний, таких как артрит или остеопороз, которые со временем ухудшаются
  • Выявить сколиоз (аномальное искривление позвоночника) и другие дефекты позвоночника

Пленка, используемая для захвата рентгеновских лучей, обычно быстро проявляется.Радиолог, врач, специально обученный чтению рентгеновских снимков, изучит пленку и отправит отчет вашему врачу или хирургу.

Рентгеновские лучи в целом безопасны и эффективны как для детей, так и для взрослых. Излучение хорошо контролируется и поддерживается на низком уровне. В некоторых случаях части вашего тела могут быть прикрыты свинцовым фартуком, чтобы свести к минимуму воздействие ненужных рентгеновских лучей.

Если вы беременны или думаете, что беременны, сообщите об этом своему врачу и технику-радиологу до того, как вам сделают рентгеновский снимок.Иногда преимущества перевешивают риски. Ваш врач может решить использовать другой тип тестирования или отложить рентген, чтобы избежать каких-либо осложнений.

Хотя рентгеновская технология не сильно изменилась с тех пор, как она была разработана немецким физиком около 100 лет назад, она является основой для ряда других методов визуализации, включая:

  • Компьютерная томография, использующая рентгеновские снимки и компьютер для создания изображений поперечного сечения вашего тела
  • Рентгеноскопия, создающая движущиеся изображения вашего тела в реальном времени

Подробнее о подготовке к рентгену.

Leave a Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *