Рентгеновского излучения виды: Рентгеновское излучение. Что это, свойства лучей, механизм, виды, источники, дозы, мощность, длина волны, защита, открытие и характеристики

Содержание

Виды рентгеновского излучения. — Студопедия

Исходя из принципа возникновения излучения различают тормозное и характеристическое излучение.

А) Тормозное рентгеновское излучение.

Электроны, испускаемые катодом, разгоняются электрическим полем, приложенным между катодом и антикатодом, приобретая у антикатода кинетическую энергию Е = еU, где

е – заряд электрона 1,6 10-19 Кл и U – напряжение между катодом и антикатодом. На поверхности вещества антикатода (зеркала) движение электрона резко тормозится электрическим полем его атомов и избыток энергии частью превращается в тепловую, а частью излучается в виде электромагнитной волны рентгеновского диапазона: Е = еU = Q + hν, где Q – тепловая энергия, h – постоянная Планка 6,68 10-34 Дж с, ν – частота электромагнитного излучения.

Появление электромагнитного излучения можно объяснить следующим образом: направленное движение электронов от катода к антикатоду представляет собой электрический ток. Вокруг электрического тока возникает магнитное поле. При торможении электронов, т.е. при резком уменьшении скорости движения электронов, электрический ток так же резко изменяется, в связи с этим магнитное поле тоже будет изменяться. По теории Максвелла вокруг изменяющегося магнитного поля возникает изменяющееся электрическое поле, а это электрическое поле создаст вокруг себя изменяющееся магнитное поле. Так возникает электромагнитное излучение.


Какая доля кинетической энергии электрона приходится на тепловую, а какая на электромагнитную зависит от различных факторов взаимодействия электрона с веществом антикатода, и несет случайный характер, т.е. для одних электронов его энергия превращается полностью в тепловую, для других — полностью в электромагнитную, а для остальных и в тепловую и электромагнитную с различной долей.

Если Q = 0, то еU = hνмакс, учитывая что частота ν и длина волны λ излучения обратны друг другу получим еU = hνмакс = hс/λмин

. Отсюда минимальная длина волны тормозного рентгеновского излучения λмин, если напряжение прикладываемое на трубку измерить в киловольтах (кВ), будет (ангстем) . Из этой формулы следует, что увеличение напряжения прикладываемого между анодом и катодом, т. е. анодного напряжения, приводит к уменьшению минимальной длины, т.е. сдвигу коротковолновой границы спектра тормозного рентгеновского излучения в сторону коротких волн.


Экспериментальной проверкой справедливости этой формулы является вычисление по ней постоянной Планка. Значение постоянной Планка, полученное этим методом, наиболее точно и достоверно.

Характерной для тормозного рентгеновского излучения является длина волны λЕмакс, на которую приходится максимум энергии излучения Емакс, т.е наибольшее количество фотонов излучения с данной длиной волны. Из рисунка следует, что при увеличении напряжения длина волны на которую приходится максимум энергии сдвигается в сторону коротких волн.

Между длинами волн на которые приходятся коротковолновая граница и максимум энергии излучения связаны друг с другом соотношением λЕмакс = 1,5 λмин =18,6/U.

Длину волны можно регулировать, изменяя напряжение трубки. При изменении напряжения изменяется не только длина волны, но и поток энергии излучения, соответственно изменяется общая мощность излучения.

Если увеличить силу тока накала катода, то увеличится его температура, что вызовет возрастание эмис­сии электронов и силы тока в трубке. Это приведет к увеличению числа фотонов рентгеновского излучения, испускаемых каждую секунду. Спектральный состав излучения не изменится (рис 4). Увеличение числа фотонов рентгеновского излучения есть увеличение потока излучения. Таким образом поток энергии рентгеновского излучения зависит от напряжения U на антикатоде, силы тока I накала рентгеновской трубки, что можно выразить формулой Ф= kU2IZ, где k – коэффициент пропорциональности, U

— напряжение, приложенное между катодом и анодом, I – сила тока в цепи трубки, Z – атомный номер вещества зеркала анода. Из этой формулы следует, что, при постоянном напряжении на аноде и силы тока нити накала трубки, поток рентгеновского излучения прямо пропорционален порядковому номеру вещества антикатода,

Спектры, полученные от различных антикатодов при одинаковых U и Iн, изображены на рисунке 5.

Из выше изложенного и формул следует, что спектр тормозного излучения (рис. 3):

а) является сплошным,

б) имеет коротковолновую границу λмин,

в) увеличение напряжения на рентгеновской трубке, изменяет спектральный состав излучения;

г) коротковолновая граница λмин=12,3/U сдвигается в сторону коротких волн λ321 при увеличении напряжения U3>U2>U1 на трубке и наоборот,

д) кроме того имеет длину волны λЕмакс

, на которую приходится максимум энергии излучения при данном напряжении,

е) длина волны λЕмакс = 1,5λмин, сдвигается в сторону коротких волн λЕмакс3Емакс2< λЕмакс1 при увеличении напряжения U3>U2>U1 на трубке и наоборот;

ж) поток энергии излучения, определяемая как площадь под кривой излучения, зависит от напряжения на антикатоде, с увеличением его увеличивается поток излучения.

Б) Характеристическое рентгеновское излучение.

Кроме тормозного, есть характеристическое излучение, которое имеет линейчатый спектр.

Характеристическое излучение возникает в результате возбуждения атомов электронами высоких энергий, которые проникают вглубь атома и переводят близкие к ядру электроны на более высокие энергетические уровни. Последующие переходы удаленных от ядра электронов на освобождающийся уровень сопровождается испусканием квантов, длины волн которых лежат в рентгеновской области и служат характеристикой материала анода.

Как правило, характеристическое излучение возникает при переходах электронов на внутренние оболочки (k, l, m) атомов с высоким порядковым номером. В веществе антикатода, подвергшемуся сильному внешнему воздействию, т.е. бомбардировке быстрыми электронами, электрон с оболочки К удаляется со своей орбиты и переходит на достаточно удаленный уровень – N (рис. 6). На освободившееся место уровня K может перейти электрон с любого другого, более высокого энергетического уровня, например, с L или М, или N уровня. При этом излучается фотон с частотой, соответствующей разности энергии перехода:

k1 = EL – EK, при чем на уровне L освобождается место, куда перейдет электрон с М уровня, испуская фотон с энергией hνL1 = EМ – EL , итд.;

k2= EМ – EK, при чем на уровне М освобождается место, куда перейдет электрон с N уровня, испуская фотон с энергией hν

М1 = EN – EМ , итд.;

k3 = EN – EK, при чем на уровне N освобождается место, куда перейдет электрон с O уровня, испуская фотон с энергией hνN1 = EO – EN , итд.

Свободное место может возникнуть на одном из внутренних оболочек, а переход электрона может происходить с любого более высокого уровня. В результате образуется излучение, состоящее из отдельных линий и специфичное для вещества, в котором оно возбуждается. Линии в спектре характеристического излучения объединяются в серии К, L, М и соответствуют переходам электронов с более высоких уровней на уровни К к- серия, L (l— серия), М (m- серия), и т.д. Частоты, соответствующие линиям этих серий, связаны атомным номером вещества, в котором излучение возбуждается. Эту связь экспериментально установил английский физик Мозли в 1913г , где ν – частота характеристического излучения; R – постоянная Ридберга, Z – порядковый номер элемента зеркала антикатода, S

n – постоянная экранирования, n – главное квантовое число. Учитывая, что величины R, n и Sn постоянные, закон Мозли можно представить в виде .

В каждой серии при переходе от Z к (Z+1) значение изменяется на одну и ту же величину, поэтому можно показать спектр характеристического излучения различных химических элементов, расположив их в ряд в соответствии с возрастанием атомного номера вещества анода (рис 7).

Краткая характеристика рентгеновского излучения — Студопедия

Рентгеновское излучение представляет собой электромагнитные волны (поток квантов, фотонов), энергия которых расположе- на на энергетической шкале между ультрафиолетовым излучением и гамма-излучением (рис. 2-1). Фотоны рентгеновского излучения имеют энергию от 100 эВ до 250 кэВ, что соответствует излучению с частотой от 3?1016 Гц до 6?1019 Гц и длиной волны 0,005-10 нм. Электромагнитные спектры рентгеновского излучения и гаммаизлучения в значительной степени перекрываются между собой.

Рис. 2-1.Шкала электромагнитных излучений

Основным отличием этих двух видов излучения является способ их возникновения. Рентгеновские лучи получаются при участии электронов (например, при торможении их потока), а гамма-лучи — при радиоактивном распаде ядер некоторых элементов.

Рентгеновские лучи могут генерироваться при торможении ускоренного потока заряженных частиц (так называемое тормозное излучение) или же при возникновении высокоэнергетичных переходов в электронных оболочках атомов (характеристическое излучение). В медицинских приборах для генерации рентгеновских лучей используются рентгеновские трубки (рис. 2-2). Их основными компонентами являются катод и массивный анод. Электроны, испускаемые вследствие разности электрических потенциалов между анодом и катодом, ускоряются, достигают анода, при столкновении с материалом которого тормозятся. Вследствие этого возникает тормозное рентгеновское излучение. Во время столкновения электронов с анодом происходит и второй процесс — выбиваются электроны из электронных оболочек атомов анода. Их места занимают электроны из других оболочек атома. В ходе этого процесса генерируется второй тип рентгеновского излучения — так называемое характеристическое рентгеновское излучение, спектр которого в значительной мере зависит от материала анода. Аноды чаще всего изготавливают из молибдена или вольфрама. Существуют специальные устройства для фокусировки и фильтрации рентгеновского излучения с целью улучшения получаемых изображений.


Рис. 2-2.Схема устройства рентгеновской трубки:

1 — анод; 2 — катод; 3 — напряжение, подаваемое на трубку; 4 — рентгеновское излучение

Свойствами рентгеновских лучей, обусловливающими их использование в медицине, являются проникающая способность, флюоресцирующее и фотохимическое действия. Проникающая способность рентгеновских лучей и их поглощение тканями человеческого тела и искусственными материалами являются важнейшими свойствами, которые обусловливают их применение в лучевой диагностике. Чем короче длина волны, тем большей проникающей способностью обладает рентгеновское излучение.


Различают «мягкое» рентгеновское излучение с малой энергией и частотой излучения (соответственно с наибольшей длиной волны) и «жесткое», обладающее высокой энергией фотонов и частотой излучения, имеющее короткую длину волны. Длина волны рентгеновского излучения (соответственно его «жесткость» и проникающая способность) зависит от величины напряжения, приложенного к рентгеновской трубке. Чем выше напряжение на трубке, тем больше скорость и энергия потока электронов и меньше длина волны у рентгеновских лучей.

При взаимодействии проникающего через вещество рентгеновского излучения в нем происходят качественные и количественные изменения. Степень поглощения рентгеновских лучей тканями различна и определяется показателями плотности и атомного веса элементов, составляющих объект. Чем выше плотность и атомный вес вещества, из которого состоит исследуемый объект (орган), тем больше поглощаются рентгеновские лучи. В человеческом теле имеются ткани и органы разной плотности (легкие, кости, мягкие ткани и т.д.), это объясняет различное поглощение рентгеновских лучей. На искусственной или естественной разности в поглощении рентгеновских лучей различными органами и тканями и основана визуализация внутренних органов и структур.

Для регистрации прошедшего через тело излучения используется его способность вызывать флюоресценцию некоторых соединений и оказывать фотохимическое действие на пленку. С этой целью исполь- зуются специальные экраны для рентгеноскопии и фотопленки для рентгенографии. В современных рентгеновских аппаратах для регистрации ослабленного излучения применяют специальные системы цифровых электронных детекторов — цифровые электронные панели. В этом случае рентгеновские методы называют цифровыми.

Из-за биологического действия рентгеновских лучей необходимо прибегать к защите пациентов при исследовании. Это достигается

максимально коротким временем облучения, заменой рентгеноскопии на рентгенографию, строго обоснованным применением ионизирующих методов, защитой с помощью экранирования пациента и персонала от воздействия излучения.

Лекция рентгеновское излучение

  1. Природа рентгеновского излучения

  2. Тормозное рентгеновское излучение, его спектральные свойства.

  3. Характеристическое рентгеновское излучение (для ознакомления).

  4. Взаимодействие рентгеновского излучения с веществом.

  5. Физические основы использования рентгеновского излучения в медицине.

Рентгеновское излучение (X – лучи) открыты К. Рентгеном который в 1895 г. стал первым Нобелевским лауреатом по физике.

  1. Природа рентгеновского излучения

Рентгеновское излучение – электромагнитные волны с длинной от 80 до 10–5 нм. Длинноволновое рентгеновское излучение перекрывается коротковолновым УФ излучением, коротковолновое – длинноволновым -излучением.

Рентгеновское излучение получают в рентгеновских трубках. рис.1.

К – катод

А – анод

1 – пучок электронов

2 –рентгеновское излучение

Рис. 1. Устройство рентгеновской трубки.

Трубка представляет собой стеклянную колбу (с возможно высоким вакуумом: давление в ней порядка 10–6 мм.рт.ст.) с двумя электродами: анодом А и катодом К, к которым приложено высокое напряжение U (несколько тысяч вольт). Катод является источником электронов (за счет явления термоэлектронной эмиссии). Анод – металлический стержень, имеет наклонную поверхность для того, чтобы направлять возникающее рентгеновское излучение под углом к оси трубки. Он изготовляется из хорошо теплопроводящего материала для отвода теплоты, образующейся при бомбардировке электронов. На скошенном торце имеется пластинка из тугоплавкого металла (например, вольфрама).

Сильный разогрев анода обусловлен тем, что основное количество электронов в катодном пучке, попав на анод, испытывает многочисленные столкновения с атомами вещества и передает им большую энергию.

Под действием высокого напряжения электроны, испущенные раскаленной нитью катода, ускоряются до больших энергий. Кинетическая энергия электрона равна mv2/2. Она равна энергии, которую он приобретает, двигаясь в электростатическом поле трубки:

mv2/2 = eU (1)

где m, e – масса и заряд электрона, U – ускоряющее напряжение.

Процессы приводящие к возникновению тормозного рентгеновского излучения обусловлены интенсивным торможением электронов в веществе анода электростатическим полем атомного ядра и атомарных электронов.

Механизм возникновения можно представить следующим образом. Движущиеся электроны – это некоторый ток, образующий свое магнитное поле. Замедление электронов – снижение силы тока и, соответственно, изменение индукции магнитного поля, которое вызовет возникновение переменного электрического поля, т.е. появление электромагнитной волны.

Таким образом, когда заряженная частица влетает в вещество, она тормозится, теряет свою энергию и скорость и излучает электромагнитные волны.

  1. Спектральные свойства тормозного рентгеновского излучения.

Итак, в случае торможения электрона в веществе анода возникает тормозное рентгеновское излучение.

Спектр тормозного рентгеновского излучения является сплошным. Причина этого в следующем.

При торможении электронов у каждого из них часть энергии идет на нагрев анода (Е1 = Q), другая часть на создание фотона рентгеновского излучения (Е2 = hv), иначе, eU = hv + Q. Соотношение между этими частями случайное.

Таким образом, непрерывный спектр тормозного рентгеновского излучения образуется благодаря торможению множества электронов, каждый из которых испускает один квант рентгеновского излучения hv (h) строго определенной величины. Величина этого кванта различна для разных электронов. Зависимость потока энергии рентгеновского излучения от длины волны , т.е. спектр рентгеновского излучения представлен на рис.2.

Рис.2. Спектр тормозного рентгеновского излучения: а) при различном напряжении U в трубке; б) при различной температуре Т катода.

Коротковолновое (жесткое) излучение обладает большей проникающей способностью, чем длинноволновое (мягкое). Мягкое излучение сильнее поглощается веществом.

Со стороны коротких длин волн спектр резко обрывается на определенной длине волны min. Такое коротковолновое тормозное излучение возникает тогда, когда энергия, приобретенная электроном в ускоряющем поле, полностью переходит в энергию фотона (Q = 0):

eU = hvmax = hc/min, min = hc/(eU), (2)

min(нм) = 1,23/UкВ

Спектральный состав излучения зависит от величины напряжения на рентгеновской трубке, с увеличением напряжения значение min смещается в сторону коротких длин волн (рис. 2a).

При изменении температуры Т накала катода возрастает эмиссия электронов. Следовательно, увеличивается ток I в трубке, но спектральный состав излучения не изменяется (рис. 2б).

Поток энергии Ф тормозного излучения прямо пропорционален квадрату напряжения U между анодом и катодом, силе тока I в трубке и атомному номеру Z вещества анода:

Ф = kZU2I. (3)

где k = 10–9 Вт/(В2А).

вред и последствия действия на человека

Содержание статьи:

Рентгеновское излучение – это электромагнитные волны, длина которых колеблется в интервале от 0,0001 до 50 нанометров. Излучение было открыто в ноябре в 1895 году физиком из Германии Вильгельмом Конрадом Рентгеном, работавшим в Вюрцбургском университете. Он охарактеризовал свойства лучей, обнаружив их способность проникания через мягкие непрозрачные ткани.

Применение и свойства рентгеновского излучения

Излучение делится два типа:

  • Характеристическое;
  • Тормозное.

Лучи характеристического типа получаются при перестройке атомов анода рентгеновской трубки. Волны различаются длиной, на них воздействуют номера химических элементов, которые используются при получении трубки.

Тормозные лучи появляются из-за торможения электронов, которые испаряются из вольфрамовой спирали.

У электромагнитных волн существует ряд характеристик, объясняющихся их природой. Электромагнитные волны при перпендикулярном падении на плоскость не отражаются.

Это интересно! При перечне соблюдённых условий алмаз отразит их.

Электромагнитные волны пробиваются через непроницаемые предметы: бумага, металл, дерево, живые ткани. Чем поверхность материала плотнее и толще, тем лучи поглощаются интенсивнее и больше.

Рентгеновское излучение вызывает свечение некоторых элементов. Он останавливается после прекращения воздействия электромагнитных волн. Электромагнитные волны засвечивают фотоплёнку.

При прохождении лучей в воздухе происходит его ионизация. В итоге воздух способен проводить ток. Облучение повреждает клетки, это связано с ионизацией биологических структур.

Благодаря рентгеновскому излучению можно просветить тело человека, чтобы получить снимок его костей. При современных технологиях также возможно выявление внутренних органов. С помощью обычных приборов получают двумерную проекцию, а благодаря компьютерным томографам возможно сделать объёмное изображение человеческих органов.

В этом промежутке времени существует такое понятие как рентгеновская дефектоскопия. С помощью неё выявляют повреждения в различных изделиях, к примеру, в варочных швах и в рельсах.

Во многих науках рентгеновское излучение применяется для выявления строения элементов на уровне атомов при помощи дифракционного рассеяния рентгеновского излучения. Это называется рентгеноструктурным анализом. В качестве примера можно привести выявление структуры ДНК.

Химический состав элементов также выявляется благодаря электромагнитным волнам. Вещество, по которому осуществляется анализ, облучается электронами, в процессе происходит ионизация атомов. Такой метод называется рентгено-флюоресцентным.

На сегодняшний момент применение рентгеновского излучения осуществляется в разных отраслях. В целях безопасности создаются переносные и стационарные приборы для выявления запрещённых или опасных для жизни предметов в таможнях, аэропортах и местах, где часто происходят столпотворения людей.

Благодаря специальным телескопам возможно наблюдение за космическими телами и различными явлениями. При помощи электромагнитных волн разрабатывается лазерное оружие.

Виды рентгеновского излучения

Оно бывает нескольких видов и различается по проникающей способности и по протяжённости волны:

  • Жёсткое;
  • Мягкое (проникающая способность значительно ниже, но сами волны длиннее).

Действует подразделение по признакам спектра и механизмам действия:

  • Характеристическое;
  • Тормозное.

Любые типы складываются благодаря рентгеновской трубке. Этот термин значит электровакуумный прибор, который предназначен для генерации электромагнитных волн. Основой работы служит термоэлектронная эмиссия.

Тормозное излучение образуется при помощи торможения электронов полем атомарных электронов. Его диапазон — непрерывный, определяется границами волн.

Влияние рентгеновского излучения на человека

После их открытия Вильгельмом Рентгеном, который опубликовал статью, назвав их х-лучами, выяснилось, что такое излучение влияет на организм человека.

Рентгеновское излучение в повышенных дозах провоцирует изменения в кожных покровах, которые похожи на ожог от солнечных лучей. Только при облучении происходит более глубокое и серьёзное повреждение верхнего слоя кожи. Появившиеся на коже язвы требуют затяжного по времени лечения.

Со временем исследователи выявили, что такого пагубного действия реально избежать, если уменьшить дозировку или время. При этом применяется дистанционное управление процедурой.

Вред от получаемых волн иногда проявляется не сразу, а только спустя промежуток времени, постепенно: случаются непрерывные или временные преобразования в структуре эритроцитов, повышается риск развития лейкемии. Возможно характерное образование последствия в виде преждевременного старения и утери эластичности кожи.

Влияние рентгеновского излучения зависит от того, какой внутренний орган подвержен излучению. Воздействие электромагнитных волн зависит от дозы лучей. При облучении половых органов у человека развивается бесплодие, при кроветворных органах – болезни крови.

Регулярное облучение даже в самых маленьких количествах и при коротких промежутках, приводит к изменениям на генетическом фоне. Они редко обратимы.

Электромагнитные волны проникают через ткани человеческого тела, при этом осуществляется ионизация в клетках, изменяется структура. Результатами таких воздействий становятся соматические осложнения или болезни в будущем поколении. Так проявляются генетические заболевания.

У людей, подвергшихся излучению, выявляются патологии крови. После маленьких доз возникают изменения её состава, которые ещё обратимы. Распадаются эритроциты и гемоглобин вследствие гемолитических изменений. Возможна тромбоцитопения.

При облучении нередки травмы хрусталика глаза, он мутнеет, и наступает катаракта.

Однократное облучение медицинской аппаратурой не влечёт за собой сильных перемен, т.к. содержит небольшую дозировку. При чувстве пациентом повышенной тревоги он вправе попросить у медика специальный защитный фартук. После выключения аппарата вредоносное действие тут же прекращается. Частое же влияние пагубно сказывается на человеческом организме.

Исследование последствий вредного облучения позволило создать международные стандарты, в которых указаны разрешённые минимальные дозы.

РЕНТГЕНОВСКОЕ ИЗЛУЧЕНИЕ — Большая Медицинская Энциклопедия

РЕНТГЕНОВСКОЕ ИЗЛУЧЕНИЕ (по имени нем. физика В. Рентгена) — разновидность квантового (фотонного) ионизирующего излучения, энергия фотонов к-рого находится обычно в диапазоне от единиц кэв до десятков Мэв.

Р. и. открыл в 1895 г. В. Рентген, к-рый назвал это излучение X-лучами. Рентгеновское излучение широко используется в медицине для целей диагностики (см. Рентгенодиагностика) и лучевой терапии (см.).

В зависимости от механизма возникновения Р. и. различают тормозное и характеристическое Р. и. Тормозное Р. и. возникает при изменении кинетической энергии заряженных частиц в результате взаимодействия с атомами тормозящего вещества. Длины волн тормозного Р. и. не зависят от атомного номера тормозящего вещества, а определяются только энергией ускоренных электронов. В отличие от непрерывного спектра тормозного Р. и. характеристическое Р. и. имеет линейный спектр с вполне определенными для данного вещества длинами волн. Длины волн и интенсивности линий характеристического спектра Р. и. определяются атомным номером элемента Z и электронной структурой атомов. Характеристическое Р. и. возникает при изменении энергетического состояния атомов. Если один из электронов внутренней оболочки атома выбит электроном или фотоном, то атом переходит в возбужденное состояние, а освободившееся место заполняется электроном с внешних слоев. При этом атом переходит в нормальное состояние и испускает квант характеристического Р. и. с энергией, равной разности энергий на соответствующих уровнях.

Источниками Р. и. являются рентгеновские трубки, подключаемые к питающему устройству рентгеновских аппаратов (см.), мишени, в к-рых осуществляется торможение заряженных частиц, ускоренных в линейных или циклических ускорителях, и нек-рые радиоактивные изотопы (см.), у к-рых в результате распада ядра происходят изменения в энергетической структуре атома.

В зависимости от энергии ускоренных электронов или от энергии квантов или длин волн генерируемого Р. и. различают коротковолновое Р. и. с энергией квантов св. 50 кэв и длинноволновое Р. и. с энергией квантов ниже 50 кэв. Р. и., генерируемое при напряжении на рентгеновской трубке 5—10 кв, называют пограничными или лучами Букки.

Взаимодействие Р. и. с веществом происходит путем фотоэлектрического поглощения, когерентного и некогерентного рассеяния и образования электронно-позитронных пар. При взаимодействии Р. и. с веществом может возникать эффект Оже, когда возбужденный атом расходует энергию на вылет собственного электрона. При этом из атома освобождаются фотоэлектроны и электроны Оже, к-рые при взаимодействии с атомами могут создавать вторичные электроны и вторичное излучение. Такие процессы размена энергии фотонов и электронов происходят до тех пор, пока их энергия не станет меньше энергии связи электронов в атоме.

При прохождении параллельного пучка Р. и. интенсивностью I0 через слой вещества толщиной Δх интенсивность Р. и. уменьшается на величину ΔI, пропорциональную начальной интенсивности I0 и толщине слоя вещества Δх:

ΔI = —μI0Δх,

где μ — линейный коэффициент ослабления, зависящий от длин волн излучения, свойств среды, через к-рую оно проходит, и показывающий относительное уменьшение интенсивности на единице толщины поглотителя, обусловленное процессами взаимодействия с веществом.

Р. и., так же как и другие виды ионизирующего излучения (см.), обладает биологическим действием. Биол. процессы, происходящие в молекулах, клетках и организме в целом под действием Р. и., обусловлены ионизацией (см.) и возбуждением атомов и молекул (см.), становящихся химически активными и вызывающих физ.-хим. изменения в клетках и межклеточном веществе.

Применение источников Р. и. требует соблюдения правил радиационной безопасности (см.) и противолучевой защиты (см.).

Библиография: Байза К., Хентер Л. и Xолбок Ш. Рентгенотехника, пер. с венгер., Будапешт, 1973; Блохин М. А. Физика рентгеновских лучей, М., 1957; Рентгеновские лучи, пер. с нем., под ред. М. А. Блохина, М., 1960; Рентгенодиагностические аппараты, под ред. H. Н. Блинова, М., 1976; Р у д е р-ман А. И. и Вайнберг М. Ш. Физические основы дистанционной рент-гено- и гамматерапии, М., 1961; Справочник по рентгенологии и радиологии, под ред. Г. А. Зедгенидзе, с. 549, М., 1972; Шмелев В. К. Рентгеновские аппараты, М.−12 м). То есть это несравнимо более жесткое излучение, чем видимый свет, который находится на этой шкале между ультрафиолетом и инфракрасными (“тепловыми”) лучами.

Граница между рентгеном и гамма-излучением выделяется условно: их диапазоны пересекаются, гамма-лучи могут иметь энергию от 1 кэв. Различаются они по происхождению: гамма-лучи испускаются в ходе процессов, происходящих в атомных ядрах, рентгеновские же – при процессах, идущих с участием электронов (как свободных, так и находящихся в электронных оболочках атомов). При этом по самому фотону невозможно установить, в ходе какого процесса он возник, то есть деление на рентгеновский и гамма-диапазон во многом условно.

Рентгеновский диапазон делят на “мягкий рентген” и “жесткий”. Граница между ними пролегает на уровне длины волны 2 ангстрема и 6 кэв энергии.

Генератор рентгеновского излучения представляет собой трубку, в которой создан вакуум. Там расположены электроды – катод, на который подается отрицательный заряд, и положительно заряженный анод. Напряжение между ними составляет десятки-сотни киловольт. Генерация рентгеновских фотонов происходит тогда, когда электроны “срываются” с катода и с высочайшей скоростью врезаются в поверхность анода. Возникающее при этом рентгеновское излучение называется “тормозным”, его фотоны имеют различную длину волны.

Одновременно происходит генерация фотонов характеристического спектра. Часть электронов в атомах вещества анода возбуждается, то есть переходит на более высокие орбиты, а потом возвращается в нормальное состояние, излучая фотоны определенной длины волны. В стандартном генераторе возникают оба типа рентгеновского излучения.

История открытия

8 ноября 1895 года немецкий ученый Вильгельм Конрад Рентген обнаружил, что некоторые вещества под воздействием “катодных лучей”, то есть потока электронов, генерируемого катодно-лучевой трубкой, начинают светиться. Он объяснил это явление воздействием неких X-лучей – так (“икс-лучи”) это излучение и сейчас называется на многих языках. Позже В.К. Рентген изучил открытое им явление. 22 декабря 1895 года он сделал доклад на эту тему в Вюрцбургском университете.

Позже выяснилось, что рентгеновское излучение наблюдалось и ранее, но тогда связанным с ним феноменам не придали большого значения. Катодно-лучевая трубка была изобретена уже давно, но до В.К. Рентгена никто не обращал особого внимания на почернение фотопластинок вблизи нее и т.п. явления. Неизвестна была и опасность, исходящая от проникающей радиации.

Виды и их влияние на организм

“Рентген” – самый мягкий тип проникающей радиации. Избыточное воздействие мягкого рентгена напоминает влияние ультрафиолетового облучения, но в более тяжелой форме. На коже образуется ожог, но поражение оказывается более глубоким, а заживает он намного медленнее.

Жесткий рентген представляет собой полноценную ионизирующую радиацию, способную привести к лучевой болезни. Рентгеновские кванты могут разрывать молекулы белков, из которых состоят ткани человеческого тела, а также молекулы ДНК генома. Но даже если рентгеновский квант разбивает молекулу воды, все равно: при этом образуются химически активные свободные радикалы H и OH, которые сами способны воздействовать на белки и ДНК. Лучевая болезнь протекает в тем более тяжелой форме, чем больше поражаются органы кроветворения.

Рентгеновские лучи обладают мутагенной и канцерогенной активностью. Это значит, что вероятность спонтанных мутаций в клетках при облучении возрастает, а иногда здоровые клетки могут перерождаться в раковые. Повышение вероятности появления злокачественных опухолей – стандартное следствие любого облучения, в том числе рентгеновского. Рентген является наименее опасным видом проникающей радиации, но он все равно может быть опасен.

Рентгеновское излучение: применение и как работает

Рентгеновское излучение применяется в медицине, а также в других сферах человеческой деятельности.

Рентгеноскопия и компьютерная томография

Наиболее частое применение рентгеновского излучения – рентгеноскопия. “Просвечивание” человеческого тела позволяет получить детальное изображение как костей (они видны наиболее четко), так и изображения внутренних органов.

Различная прозрачность тканей тела в рентгеновских лучах связана с их химическим составом. Особенности строения костей в том, что они содержат много кальция и фосфора. Другие же ткани состоят в основном из углерода, водорода, кислорода и азота. Атом фосфора превосходит по весу атом кислорода почти вдвое, а атом кальция – в 2,5 раза (углерод, азот и водород – еще легче кислорода). В связи с этим поглощение рентгеновских фотонов в костях оказывается намного выше.

Помимо двухмерных “снимков” рентгенография дает возможность создать трехмерное изображение органа: эта разновидность рентгенографии называется компьютерной томографией. Для этих целей применяется мягкий рентген. Объем облучения, полученный при одном снимке, невелик: он примерно равен облучению, получаемому при 2-часовом полете на самолете на высоте 10 км.

Рентгеновская дефектоскопия

Рентгеновская дефектоскопия позволяет выявлять мелкие внутренние дефекты в изделиях. Для нее используется жесткий рентген, так как многие материалы (металл например) плохо “просвечиваются” из-за высокой атомной массы составляющего их вещества.

Рентгеноструктурный и рентгенофлуоресцентный анализ

У рентгеновских лучей свойства позволяют с их помощью детально рассматривать отдельные атомы. Рентгеноструктурный анализ активно применяется в химии (в том числе биохимии) и кристаллографии. Принцип его работы – дифракционное рассеивание рентгеновских лучей на атомах кристаллов или сложных молекул. При помощи рентгеноструктурного анализа была определена структура молекулы ДНК.

Рентгенофлуоресцентный анализ позволяет быстро определить химический состав вещества.

Радиотерапия

Существует множество форм радиотерапии, но все они подразумевают использование ионизирующей радиации. Радиотерапия делится на 2 типа: корпускулярный и волновой. Корпускулярный использует потоки альфа-частиц (ядер атомов гелия), бета-частиц (электронов), нейтронов, протонов, тяжелых ионов. Волновой использует лучи электромагнитного спектра – рентгеновские и гамма.

Используются радиотерапевтические методы прежде всего для лечения онкологических заболеваний. Дело в том, что радиация поражает в первую очередь активно делящиеся клетки, поэтому так страдают органы кроветворения (их клетки постоянно делятся, производя все новые эритроциты). Раковые клетки тоже постоянно делятся и более уязвимы для радиации, чем здоровая ткань.

Используется уровень облучения, который подавляет активность раковых клеток, умеренно влияя на здоровые. Под воздействием радиации происходит не разрушение клеток как таковое, а поражение их генома – молекул ДНК. Клетка с разрушенным геномом может некоторое время существовать, но уже не может делиться, то есть рост опухоли прекращается.

Рентгенотерапия – наиболее мягкая форма радиотерапии. Волновая радиация мягче корпускулярной, а рентген – мягче гамма-излучения.

При беременности

Использовать ионизирующую радиацию при беременности опасно. Рентгеновские лучи обладают мутагенной активностью и могут вызвать нарушения у плода. Рентгенотерапия несовместима с беременностью: она может применяться только в том случае, если уже решено производить аборт. Ограничения на рентгеноскопию мягче, но в первые месяцы она тоже строго запрещена.

В случае крайней необходимости рентгенологическое исследование заменяют магниторезонансной томографией. Но в первый триместр стараются избегать и ее (этот метод появился недавно, и с абсолютной уверенностью говорить об отсутствии вредных последствий).

Однозначная опасность возникает при облучении суммарной дозой не менее 1 мЗв (в старых единицах – 100 мР). При простом рентгеновском снимке (например, при прохождении флюорографии) пациентка получает примерно в 50 раз меньше. Для того, чтобы получить такую дозу за 1 раз, нужно подвергнуться детальной компьютерной томографии.

То есть сам по себе факт 1-2-кратного “рентгена” на ранней стадии беременности не грозит тяжелыми последствиями (но лучше не рисковать).

Лечение с помощью него

Рентгеновские лучи применяют прежде всего при борьбе со злокачественными опухолями. Этот метод хорош тем, что высокоэффективен: он убивает опухоль. Плох он тем, что здоровым тканям приходится немногим лучше, имеются многочисленные побочные эффекты. В особой опасности находятся органы кроветворения.

На практике применяются различные методы, позволяющие снизить воздействие рентгена на здоровые ткани. Лучи направляются под углом таким образом, чтобы в зоне их перекрещивания оказалась опухоль (благодаря этому основное поглощение энергии происходит как раз там). Иногда процедура производится в движении: тело пациента относительно источника излучения вращается вокруг оси, проходящей через опухоль. При этом здоровые ткани оказываются в зоне облучения лишь иногда, а больные – постоянно.

Рентген используется при лечении некоторых артрозов и подобных заболеваний, а также кожных болезней. При этом болевой синдром снижается на 50-90%. Так как излучение при этом используется более мягкое, побочных эффектов, аналогичных тем, что возникают при лечении опухолей, не наблюдается.

Какие бывают типы рентгеновских лучей?

Какие бывают типы рентгеновских лучей?

От зубов до пальцев ног, от живота до щиколотки, любую часть тела можно изучить с помощью рентгена. Почти все рентгеновские снимки в основном работают одинаково, но есть несколько основных различий в этих шести типах ультразвука, которые медицинская наука признает по-разному.

Рентгенография почек, мочеточника и мочевого пузыря

Также известный как KUB X-Rays, этот тест выполняется для оценки области живота на предмет того, что может быть причиной боли в животе.Он также может оценить органы и структуры мочевыделительной и / или желудочно-кишечной (ЖКТ) системы. Рентген KUB — это практически первая диагностическая процедура, используемая для оценки состояния мочевыделительной системы.

Рентгеновские снимки зубов и костей

Эти рентгеновские снимки, которые часто используются более специализированными аппаратами, дают высокий уровень детализации костей, зубов и поддерживающих тканей рта. Эти рентгеновские лучи позволяют стоматологам увидеть корни зубов, состояние развивающихся зубов и состояние костных участков.

Рентген грудной клетки

Небольшой тест, в котором используется излучение для получения изображений костей, тканей и органов тела внутри и вокруг груди. Врач назначает рентген грудной клетки по ряду причин, таких как одышка, жар, боль в груди и постоянный кашель. Это быстрый и эффективный тест, который помогает проанализировать состояние некоторых из наиболее важных органов.

Рентген легких

Этот тип рентгеновского снимка используется врачами для оценки состояния легких путем сравнения верхней, средней и нижней зон легких.Асимметрия плотности легких на рентгеновском снимке легких представлена ​​либо аномальной белизной (повышенная плотность), либо аномальной чернотой (пониженной плотностью). После того, как рентгенолог обнаружит асимметрию, следующим шагом будет определение того, какая сторона аномальна. Если есть область, которая отличается от окружающего ипсилатерального легкого, то, скорее всего, это аномальная область.

Рентген брюшной полости

Еще один визуализирующий тест для просмотра структур и органов живота. Этот рентгеновский снимок охватывает тонкий и толстый кишечник, печень и желудок.Это один из первых тестов, который врачи используют для определения причины тошноты, боли в животе, рвоты и отека. Другие тесты, такие как внутривенная пиелография, ультразвук и компьютерная томография, также проводятся для поиска или выявления более конкретных проблем.

Стандартная компьютерная томография

Более подробная версия обычного рентгеновского снимка называется стандартной компьютерной томографией или иначе известна как компьютерная аксиальная томография, или просто компьютерная томография. Он проводится в больнице или в кабинете рентгенолога.Тест помогает получить подробные изображения областей внутри тела, обычно для диагностики системы кровообращения, такой как аневризмы кровеносных сосудов, сгустки крови и ишемическая болезнь сердца.


Получение рентгеновского снимка:


Перед рентгеновским снимком
Во время рентгеновского снимка
После рентгена

Вверху: рентгеновский снимок запястья, кисти и руки после операции.

ВВЕРХУ: Рентгеновский снимок желчного пузыря с увеличенным камнем.

ВВЕРХУ: Рентгеновский снимок шейного отдела позвоночника со смещением позвонков.

Вверху: рентгеновский снимок руки с остеосаркомой.

Вверху: рентгеновский снимок проглоченных батареек в брюшной полости.


ОТПРАВИТЬ НАМ ПРОСМОТР

Мы будем рады услышать ваши мысли и мнения.



Что такое рентгеновские лучи? Факты об электромагнитном спектре и их использование

Рентгеновские лучи — это типы электромагнитного излучения, которые, вероятно, наиболее известны своей способностью видеть сквозь кожу человека и обнаруживать изображения костей под ней.Достижения в области технологий привели к появлению более мощных и сфокусированных рентгеновских лучей, а также все более широкому применению этих световых волн, от получения изображений крошечных биологических клеток и структурных компонентов материалов, таких как цемент, до уничтожения раковых клеток.

Рентгеновские лучи грубо подразделяются на мягкие и жесткие. Мягкое рентгеновское излучение имеет относительно короткие длины волн, около 10 нанометров (нанометр составляет одну миллиардную метра), и поэтому они попадают в диапазон электромагнитного (ЭМ) спектра между ультрафиолетовым (УФ) светом и гамма-лучами.Жесткое рентгеновское излучение имеет длину волны около 100 пикометров (пикометр составляет одну триллионную часть метра). Эти электромагнитные волны занимают ту же область электромагнитного спектра, что и гамма-лучи. Единственное различие между ними заключается в их источнике: рентгеновские лучи производятся ускорением электронов, тогда как гамма-лучи производятся атомными ядрами в одной из четырех ядерных реакций.

История рентгеновских лучей

Рентгеновские лучи были открыты в 1895 году Вильгельмом Конрадом Рентгеном, профессором Вюрцбургского университета в Германии.Согласно «Истории радиографии» Центра неразрушающих ресурсов, Рентген заметил кристаллы около высоковольтной электронно-лучевой трубки, показывающие флуоресцентное свечение, даже когда он закрывал их темной бумагой. Некоторая форма энергии вырабатывалась трубкой, которая проникала в бумагу и заставляла кристаллы светиться. Рентген назвал неизвестную энергию «рентгеновским излучением». Эксперименты показали, что это излучение могло проникать в мягкие ткани, но не в кости, и создавало теневые изображения на фотопластинках.

За это открытие Рентген был удостоен самой первой Нобелевской премии по физике в 1901 году.

Источники рентгеновского излучения и эффекты

Рентгеновские лучи могут быть произведены на Земле, посылая пучок электронов высокой энергии, врезающийся в По словам Келли Гаффни, директора Стэнфордского источника синхротронного излучения, такой атом, как медь или галлий. Когда луч попадает в атом, электроны во внутренней оболочке, называемой s-оболочкой, сталкиваются, а иногда и выбрасываются со своей орбиты.Без этого электрона или электронов атом становится нестабильным, и поэтому, чтобы атом «расслабился» или вернулся в равновесие, по словам Гаффни, электрон в так называемой 1p-оболочке падает, чтобы заполнить пробел. Результат? Выпущен рентгеновский снимок.

«Проблема в том, что флуоресценция [или испускаемый рентгеновский свет] распространяется во всех направлениях», — сказал Гаффни Live Science. «Они не являются направленными и не фокусируемыми. Это не очень простой способ создать высокоэнергетический и яркий источник рентгеновских лучей».

Войдите в синхротрон, тип ускорителя частиц, который ускоряет заряженные частицы, такие как электроны, по замкнутому круговому пути.Базовая физика предполагает, что всякий раз, когда вы ускоряете заряженную частицу, она испускает свет. По словам Гаффни, тип света зависит от энергии электронов (или других заряженных частиц) и магнитного поля, которое толкает их по кругу.

Поскольку синхротронные электроны приближаются к скорости, близкой к скорости света, они выделяют огромное количество энергии, особенно рентгеновского излучения. И не просто рентгеновские лучи, а очень мощный пучок сфокусированного рентгеновского света.

Синхротронное излучение было впервые обнаружено в General Electric в США в 1947 году, согласно данным Европейского центра синхротронного излучения.Это излучение считалось неприятным, поскольку оно заставляло частицы терять энергию, но позже в 1960-х годах оно было признано светом с исключительными свойствами, которые преодолели недостатки рентгеновских трубок. Одна интересная особенность синхротронного излучения состоит в том, что оно поляризовано; то есть электрическое и магнитное поля фотонов все колеблются в одном и том же направлении, которое может быть линейным или круговым.

«Поскольку электроны релятивистские [или движутся со скоростью, близкой к скорости света], когда они излучают свет, он в конечном итоге фокусируется в прямом направлении», — сказал Гаффни.«Это означает, что вы получаете не только рентгеновские лучи нужного цвета, и не только их много, потому что у вас хранится много электронов, они также предпочтительно излучаются в прямом направлении».

Рентгеновское изображение

Из-за своей способности проникать в определенные материалы, рентгеновские лучи используются для нескольких задач неразрушающей оценки и тестирования, в частности, для выявления дефектов или трещин в конструктивных элементах. Согласно Ресурсному центру неразрушающего контроля, «излучение направляется через деталь на пленку или другой детектор.Получившаяся теневая диаграмма показывает «внутренние особенности» и является ли деталь здоровой. Это тот же метод, который используется в кабинетах врачей и стоматологов для создания рентгеновских изображений костей и зубов соответственно.

Рентгеновские лучи также необходимы для проверки безопасности перевозки грузов, багажа и пассажиров. Электронные детекторы изображений позволяют визуализировать в реальном времени содержимое пакетов и других предметов пассажиров.

Изначально рентгеновские лучи использовались для получения изображений кости, которые были легко отличимы от мягких тканей на пленке, которая была доступна в то время.Однако более точные системы фокусировки и более чувствительные методы обнаружения, такие как улучшенные фотографические пленки и электронные датчики изображения, позволили различать все более мелкие детали и тонкие различия в плотности тканей при использовании гораздо более низких уровней экспозиции.

Кроме того, компьютерная томография (КТ) объединяет несколько рентгеновских изображений в трехмерную модель интересующей области.

По данным Центра материалов и энергетики им. Гельмгольца, синхротронная томография, как и компьютерная томография, может отображать трехмерные изображения внутренних структур таких объектов, как инженерные компоненты.

Рентгеновская терапия

Лучевая терапия использует высокоэнергетическое излучение для уничтожения раковых клеток путем повреждения их ДНК. Поскольку лечение также может повредить нормальные клетки, Национальный институт рака рекомендует тщательно спланировать лечение, чтобы минимизировать побочные эффекты.

По данным Агентства по охране окружающей среды США, так называемое ионизирующее излучение рентгеновских лучей поражает сфокусированную область с достаточной энергией, чтобы полностью отделить электроны от атомов и молекул, тем самым изменяя их свойства.В достаточных дозах это может повредить или разрушить клетки. Хотя это повреждение клеток может вызвать рак, его также можно использовать для борьбы с ним. Направляя рентгеновские лучи на раковые опухоли, он может уничтожить эти аномальные клетки.

Рентгеновская астрономия

По словам Роберта Паттерсона, профессора астрономии в Университете штата Миссури, небесные источники рентгеновского излучения включают тесные двойные системы, содержащие черные дыры или нейтронные звезды. В этих системах более массивный и компактный звездный остаток может отделить материал от своей звезды-компаньона, чтобы сформировать диск чрезвычайно горячего газа, излучающего рентгеновские лучи, по мере его движения по спирали внутрь.Кроме того, сверхмассивные черные дыры в центрах спиральных галактик могут излучать рентгеновские лучи, поскольку они поглощают звезды и газовые облака, попадающие в зону их действия гравитации.

Рентгеновские телескопы используют отражения под малым углом для фокусировки этих высокоэнергетических фотонов (света), которые в противном случае прошли бы через обычные зеркала телескопа. Поскольку атмосфера Земли блокирует большинство рентгеновских лучей, наблюдения обычно проводятся с использованием высотных аэростатов или орбитальных телескопов.

Дополнительные ресурсы

Эта страница была обновлена ​​окт.5 января 2018 г., автор статьи Жанна Брайнер, главный редактор Live Science.

Основы рентгеновской физики — Производство рентгеновских лучей

Ключевые моменты
  • Рентгеновские лучи образуются при взаимодействии ускоренных электронов с ядрами вольфрама внутри анода трубки
  • Генерируются два типа излучения: характеристическое излучение и тормозное излучение ( торможение) излучение
  • Изменение настроек тока или напряжения рентгеновского аппарата изменяет свойства рентгеновского луча

Рентгеновские лучи производятся внутри рентгеновского аппарата, также известного как рентгеновская трубка.Никаких внешних радиоактивных материалов нет.

Рентгенологи могут изменять настройки тока и напряжения на рентгеновском аппарате, чтобы управлять свойствами создаваемого рентгеновского луча. На разные части тела наносятся разные спектры рентгеновских лучей.

Рентгеновская трубка

Наведите / выключите изображение, чтобы показать / скрыть результаты

Нажмите на изображение, чтобы показать / скрыть результаты

Щелкните изображение, чтобы выровнять с верхом страницы

Рентгеновская трубка
  • Небольшое увеличение напряжения накала ( 1 ) приводит к значительному увеличению тока трубки ( 2 ), что ускоряет высокоскоростные электроны от очень высокотемпературного отрицательного катода накала ( 3 ) в вакууме в направлении положительный вольфрамовый анод-мишень ( 4 ).Этот анод вращается для рассеивания выделяемого тепла. Рентгеновские лучи генерируются внутри вольфрамового анода, а рентгеновский луч ( 5 ) направлен на пациента.

Рентгеновское излучение генерируется за счет взаимодействия ускоренных электронов с электронами ядер вольфрама внутри анода трубки. Существует два типа генерируемого рентгеновского излучения: характеристическое излучение и тормозное излучение.

Генерация характеристического рентгеновского излучения

Наведите / выключите изображение, чтобы показать / скрыть результаты

Нажмите на изображение, чтобы показать / скрыть результаты

Щелкните изображение, чтобы выровнять его с верхней частью страницы

Характерное генерирование рентгеновского излучения
  • Когда электрон высокой энергии ( 1 ) сталкивается с электроном внутренней оболочки ( 2 ), оба выбрасываются из атома вольфрама, оставляя «дыру» во внутреннем слое.Он заполняется электроном внешней оболочки ( 3 ) с потерей энергии, излучаемой как рентгеновский фотон ( 4 ).

Тормозное излучение / Торможение Генерация рентгеновского излучения

Наведите указатель мыши на изображение, чтобы показать / скрыть результаты

Нажмите на изображение, чтобы показать / скрыть результаты

Щелкните изображение, чтобы выровнять его с верхней частью страницы

Тормозное излучение / Торможение X -лучение поколения
  • Когда электрон проходит рядом с ядром, он замедляется, и его путь отклоняется. Потерянная энергия испускается в виде тормозного рентгеновского фотона.
  • Тормозное излучение = тормозное излучение
  • Примерно 80% рентгеновского излучения в рентгеновском луче составляют рентгеновские лучи, генерируемые таким образом.

Спектр рентгеновского излучения

Наведите указатель мыши на изображение, чтобы показать / скрыть результаты

Нажмите на изображение, чтобы показать / скрыть результаты

Щелкните изображение, чтобы выровнять его с верхней частью страницы

Спектр рентгеновского излучения
  • В результате генерации характеристического и тормозного излучения в пучке рентгеновских лучей создается спектр энергии рентгеновского излучения.
  • Этим спектром можно управлять, изменяя настройки тока или напряжения рентгеновской трубки или добавляя фильтры для исключения низкоэнергетических рентгеновских лучей. Таким образом, рентгенологи могут применять разные спектры рентгеновских лучей к разным частям тела.

Рентген | Определение, история и факты

Рентгеновское , электромагнитное излучение с чрезвычайно короткой длиной волны и высокой частотой, с длинами волн от примерно 10 -8 до 10 -12 метров и соответствующими частотами примерно от 10 16 до 10 20 герц ( Гц).

электромагнитный спектр

Связь рентгеновского излучения с другим электромагнитным излучением в пределах электромагнитного спектра.

Encyclopdia Britannica, Inc.

Британская викторина

Тест на медицинские условия и открытия

Если вы видите на коже темные волнистые линии и чешетесь по ночам, какой у вас паразит?

Рентгеновские лучи обычно образуются при ускорении (или замедлении) заряженных частиц; примеры включают пучок электронов, падающий на металлическую пластину в рентгеновской трубке, и циркулирующий пучок электронов в ускорителе синхротронных частиц или накопительном кольце.Кроме того, высоковозбужденные атомы могут излучать рентгеновское излучение с дискретными длинами волн, характерными для расстояний между уровнями энергии в атомах. Рентгеновская область электромагнитного спектра находится далеко за пределами видимого диапазона длин волн. Однако прохождение рентгеновских лучей через материалы, включая биологические ткани, можно регистрировать с помощью фотопленок и других детекторов. Анализ рентгеновских снимков тела — чрезвычайно ценный медицинский диагностический инструмент.

Рентгеновские лучи — это форма ионизирующего излучения — при взаимодействии с веществом они обладают достаточной энергией, чтобы заставить нейтральные атомы выбрасывать электроны.Благодаря этому процессу ионизации энергия рентгеновских лучей откладывается в веществе. Проходя через живую ткань, рентгеновские лучи могут вызывать вредные биохимические изменения в генах, хромосомах и других компонентах клетки. Биологические эффекты ионизирующего излучения, которые сложны и сильно зависят от продолжительности и интенсивности воздействия, все еще активно изучаются ( см. радиационное поражение). Рентгеновская лучевая терапия использует эти эффекты для борьбы с ростом злокачественных опухолей.

Рентгеновские лучи были открыты в 1895 году немецким физиком Вильгельмом Конрадом Рентгеном при исследовании влияния электронных лучей (тогда называемых катодными лучами) на электрические разряды через газы низкого давления. Рентген обнаружил поразительный эффект, а именно то, что экран, покрытый флуоресцентным материалом, расположенный снаружи разрядной трубки, будет светиться, даже если он защищен от прямого видимого и ультрафиолетового света газового разряда. Он пришел к выводу, что невидимое излучение трубки проходит через воздух и вызывает флуоресценцию экрана.Рентгену удалось показать, что излучение, ответственное за флуоресценцию, исходит из точки, где электронный луч попадает на стеклянную стенку разрядной трубки. Непрозрачные объекты, помещенные между трубкой и экраном, оказались прозрачными для новой формы излучения; Рентген наглядно продемонстрировал это, сделав фотографическое изображение костей человеческой руки. Его открытие так называемых рентгеновских лучей было встречено во всем мире научным и популярным энтузиазмом, и, наряду с открытиями радиоактивности (1896 г.) и электрона (1897 г.), оно положило начало изучению атомного мира и эре современной физики. .

Получите эксклюзивный доступ к контенту из нашего 1768 First Edition с подпиской. Подпишитесь сегодня

Стоматологические рентгеновские снимки: типы, безопасность, детские стоматологические рентгеновские снимки

Понимание

Преимущества рентгеновских лучей хорошо известны: они помогают стоматологам диагностировать общие проблемы, такие как кариес, заболевания десен и некоторые типы инфекций. Рентгенограммы позволяют стоматологам заглянуть внутрь зуба и под десну, чтобы оценить состояние костей и поддерживающих тканей, удерживающих зубы на месте.

Профессиональный стоматолог может заказать несколько рентгеновских снимков. Тип необходимого рентгеновского снимка во многом зависит от типа ухода, который требуется пациенту.

Вот некоторые из наиболее распространенных типов выполняемых рентгеновских снимков:

Periapical
Обеспечивает обзор всего зуба от коронки до кости, что помогает поддерживать зуб.

Bite-Wing
Обеспечивает визуальный контроль нижних и верхних боковых зубов.Этот тип рентгеновского снимка показывает стоматологу, как эти зубы соприкасаются друг с другом (или смыкаются), и помогает определить, присутствует ли кариес между задними зубами.

Панорамный
Показывает вид на зубы, челюсти, область носа, пазухи и суставы челюсти. Обычно это делается, когда пациенту может потребоваться ортодонтическое лечение или установка имплантата.

Окклюзионный
Обеспечивает четкий обзор дна рта, чтобы показать прикус верхней или нижней челюсти.Этот вид рентгеновского снимка показывает развитие зубов у детей, показывая молочные (детские) и постоянные (взрослые) зубы.

Эти рентгеновские снимки обычно выполняются в кабинете стоматолога или стоматолога-специалиста. Сначала стоматолог накроет вас тяжелым свинцовым фартуком, чтобы защитить ваше тело от радиации. Затем стоматолог вставит вам в рот небольшой пластиковый аппарат и попросит вас прикусить его — это удерживает рентгеновскую пленку на месте. Затем технический специалист сделает рентгеновский снимок целевой области.Этот процесс безболезненный и будет повторяться до тех пор, пока не будут получены изображения всего рта. Использование цифровых рентгеновских лучей обеспечивает значительно меньшее облучение стоматологического пациента, а также удобство и экономию времени для стоматологической практики.

Рентген

Ниже приведены примеры обследований и процедур, в которых используется рентгеновское излучение для диагностики или лечения заболеваний:

Диагностика

Рентгенография: Обнаруживает переломы костей, определенные опухоли и другие аномальные образования, пневмонию, некоторые виды травм, кальцификаты, инородные предметы, проблемы с зубами и т. Д.

Маммография: Рентгеновский снимок груди, используемый для обнаружения и диагностики рака. Опухоли, как правило, выглядят как образования правильной или неправильной формы, которые несколько ярче, чем фон на рентгенограмме (т. Е. Более белые на черном фоне или более черные на белом фоне). Маммограмма также может обнаружить крошечные частицы кальция, называемые микрокальцификациями, которые проявляются в виде очень ярких пятнышек на маммограмме. Обычно микрокальцификаты доброкачественные, но иногда могут указывать на наличие определенного типа рака.

КТ (компьютерная томография): Сочетает традиционную рентгеновскую технологию с компьютерной обработкой для создания серии изображений поперечного сечения тела, которые впоследствии могут быть объединены для формирования трехмерного рентгеновского изображения. КТ-изображения более подробны, чем обычные рентгенограммы, и дают врачам возможность рассматривать структуры внутри тела под разными углами.

Рентгеноскопия: Использует рентгеновские лучи и флуоресцентный экран для получения изображений движения внутри тела в реальном времени или для просмотра диагностических процессов, таких как отслеживание пути введенного или проглоченного контрастного вещества.Например, рентгеноскопия используется для наблюдения за движением бьющегося сердца и с помощью рентгенографических контрастных веществ для наблюдения за кровотоком в сердечной мышце, а также через кровеносные сосуды и органы. Эта технология также используется с рентгенографическим контрастным веществом для направления катетера с внутренней резьбой во время сердечной ангиопластики, которая является минимально инвазивной процедурой для открытия закупоренных артерий, по которым кровь поступает в сердце.

Лечебная

Лучевая терапия в лечении рака: Рентгеновские лучи и другие виды высокоэнергетического излучения могут использоваться для уничтожения раковых опухолей и клеток путем повреждения их ДНК.

Leave a Comment

Ваш адрес email не будет опубликован.